Synthetic Polymers – Preparation and Properties.

Prof. Attilio Citterio
Dipartimento CMIC “Giulio Natta”
http://iscamapweb.chem.polimi.it/citterio/education/course-topics/
Materials: Intensity of Use.

Polymers growth is twice the one of other materials.

Source: UBS Warburg
1) Commodity plastics
 LDPE, HDPE, PP, PVC, PS

2) Engineering plastics
 Acetal, Polyamide, Polyamideimide, Polyacrylate, Polybenzimidazole, etc.

3) Thermosetting plastics
 Phenol-formaldehyde, Urea-formaldehyde, Unsaturated polyester, Epoxy, Melamine-formaldehyde

4) Functional plastics
 Optics, Biomaterial, etc.
Six Polymers Have Around ~75% Share

Distribution of European (EU28+NO/CH) plastics converter demand by resin type in 2016.
Polymers Price as Function of Sale Volume.

Source: Biomer-UrsJ. Haenggi
World and EU plastics production data (2017).

Includes plastic materials (thermoplastics and polyurethanes) and other plastics (thermosets, adhesives, coatings and sealants). Does not include: PET fibers, PA fibers, PP fibers and polyacryls-fibers.

Source: PlasticsEurope (PEMRG) / Conversio Market & Strategy GmbH
World Plastics Production (2011).

Fig. 2 - World Plastic Material Production 1950-2011
Includes Thermoplastics, Polyurethanes, Thermosets, Elastomers, Adhesives, Coatings and Sealants and PP-Fibers. Not included PET, PA and Polyacrylic Fibers
Source: Plastic Europe Market Research Group (PEMRG)

Fig. 3 - World Plastic Material Production 2011 w/o Other Plastics (~45 Mtonne)
Source: Plastic Europe Market Research Group (PEMRG)
China is the largest producer of plastic materials*, followed by Europe and NAFTA. World production of plastic materials in **2016**: 280 million tonnes. (*Plastic materials: only thermoplastics and polyurethanes)
European Plastics Demand by Segment (weight %).

- Packaging: 38%
- Building & Construction: 22%
- Other household: 22%
- Big Industry: 5.2%
- Agriculture: 2.5%
- Electrical & Electronic: 7.3%
- Automotive: 7.0%
- Other: 26.4%

Total: 38,123,000 ton. (2002)

Total: 58,000,000 ton. (2011)
Plastics Converter Demand Main Market Sectors.

2016

- Packaging: 39.9%
- Building & Construction: 19.7%
- Automotive: 10%
- Electrical & Electronic: 6.2%
- Household, Leisure & Sports: 4.2%
- Agriculture: 3.3%
- Others: 16.7%

Total converter demand: 49.9 MT

Source: PlasticsEurope (PEMRG) / Conversio Market & Strategy GmbH
European Plastics Demand by Country (kton/year).

Source: PlasticsEurope Market Research Group (PEMRG)
Top Extra EU Trade Partners of Plastics in Value.

2016 Extra EU Exports

- Plastics manufacturing
 - China: 17.6%
 - Russia: 5.8%
 - USA: 5.8%
 - Hong Kong: 5.8%
 - Switzerland: 5.5%

- Plastics processing
 - Switzerland: 12.1%
 - Russia: 9.4%
 - USA: 8.7%
 - Turkey: 6.6%
 - China: 6%

2016 Extra EU Imports

- Plastics manufacturing
 - Saudi Arabia: 18.1%
 - South Korea: 15.8%
 - USA: 13.1%
 - Norway: 4.3%
 - Qatar: 4%

- Plastics processing
 - Turkey: 17.6%
 - China: 17.4%
 - Switzerland: 9.6%
 - USA: 7.9%
 - Saudi Arabia: 6%

Source: PlasticsEurope (PEMRG) / Conversio Market & Strategy GmbH
European plastics converter demand by segments and polymer types in 2016.

Source: PlasticsEurope (PEMRG) / Conversio Market & Strategy GmbH
Production and Consumption of Plastics in Italy.
Plastics Uses in Italy by Segments (2010).

- House packaging: 40%
- Building & construction: 14%
- Other household: 4%
- Industry: 4%
- Agricultural: 6%
- Furniture: 5%
- Automotive & transport: 7%
- Electrical & Electronic: 8%
- Industrial and commercial packaging: 12%
Polymers: Synthetic Methods and Manufacturing.
Polymer (from Greek terms = “poly” + “mer”) means several units and emphasizes what the polymer is: a long chain (macromolecule) of one, two or occasionally more units of small identical molecules bonded together. The term “Polymer” firstly used by Berzelius in 1833.
Polyethylene is a long-chain hydrocarbon.

Top figure shows repeat unit and chain structures.

Other figure shows zigzag backbone 3D structure.
Polymers consist of high molecular weight molecules, generally organic, known as **macromolecules**.

Macromolecules originate by bonding a large number of small units, called monomers, to form very long chains.

- Main synthetic polymers are old of ~100 years, some were discovered more recently (<50 years).

- Major classes:
 - plastics
 - rubber
 - coatings
 - adhesives
 - fibers
 - **natural polymers**
 - proteins
 - nucleic acids
 - polysaccharides ...
Definitions.

A. According to the amount of repeating units

- **monomer**: one unit
- **oligomer**: few units
- **polymer**: many units (poly – several, mer – part)
- **telechelic polymer**: polymer containing reactive end group

 (tele = far, chele = claw)
- **telechelic oligomer**: oligomer containing reactive end group
- **macromer (= macro monomer)**: monomer containing long chain
B. DP: Degree of polymerization

The total number of repeating units in the polymer chain including terminal group

C. The kinds of applied monomers

- One kind: Homopolymer
- Two kinds: Copolymer
- Three kinds: Terpolymer

D. The space arrangement of chains

- Linear
- Branched
- Crosslinked
Polymer Classification.

Based on origin:
- Synthetic polymers
 - Plastics
 - Resins
 - Rubbers
- Natural polymers
 - Polysaccharides
 - Proteins
 - Nucleic acids

Based on structure:
- Homo-polymers
- Co-polymers
 - Random
 - Segments or blocks
 - Graft

Based on thermal behaviour:
- Thermoplastic polymers
- Thermoset polymers

Based on polymerization mechanisms:
- Step-growth (Condensation) polymers
- Chain-growth (Addition) polymers
 - Radical addition
 - Ionic addition
Homopolymers and Copolymers.

Monomeric units (or Base Units) are repeating units in the polymer:

- Polymers are made by one or more monomeric unit.
- These are bonded together to form a chain.
- The monomeric units must be bifunctional – they must have two functional groups or a double bond to form long chains.

Homopolymer:

![Diagram of homopolymer]

Copolymer:

![Diagram of copolymer]
When multiple subunits are used to assemble a polymer, the result is called a copolymer.

- Types of copolymer:
 - **Alternating**
 - **Random**
 - **Block**
 - **Graft**
E. Representation of polymer types and architectures:

- Linear
- Branch
- Network

- Amorphous
- Partially crystalline
- Rigid
- Flexible

(a) star polymer
(b) comb polymer
(c) ladder polymer
(d) semi-ladder polymer
(e) polyrotaxane
(f) polycatenane
(g) dendrimer
Types of Nomenclature.

a. **Source name**: to be based on names of corresponding monomer
 Polyethylene, Poly(vinyl chloride), Poly(ethylene oxide)

b. **IUPAC name**: to be based on CRU, systematic name
 Poly(methylene), Poly(1-chloroethylene), Poly(oxyethylene)

c. **Functional group name**: According to name of functional group in the polymer backbone
 Polyamide, Polyester

d. **Trade name**: the commercial names by manufacturer, i.e. Teflon, Nylon

e. **Abbreviation name**: PVC, PET

f. **Complex and Network polymer**: Phenol-formaldehyde polymer

g. **Vinyl polymer**: Polyolefin
Chemistry of Polymers.

Classification of polymers:

- **Addition polymers**: repeating units and monomers are the same.

- **Condensation polymers**: repeating units and monomers are different, by splitting out small molecule.
Modern classification of polymerization processes is according to polymerization mechanism:

- **Step growth polymerization**: Polymers build up stepwise.
- **Chain growth polymerization**: In addition polymerization molecular weights increase successively, one by one monomer.
- **Ring-opening polymerization**: may be either step or chain reaction.
Stereochemistry of Polymers.

Tacticity:

- Polymers with functional groups bonded have different properties depending on the structure of the insertion of functional group:

Isotactic:

![Isotactic Polypropylene (PP)]

Atactic:

![Atactic Polypropylene (PP)]
Some polymers are very flexible, others are rigid:

Flexible:

```
Flexible:
```

```
polypropylene
```

“Rigid”:

```
“Rigid”:
```

```
polyimide
```

(only rotations around oxygen atom induce flexibility)
Physical Properties of Polymers.

The physical properties of polymers depend on many factors, among which:

- the polymerization degree;
- the molecular weight and associated distribution;
- the temperature;
- the chain arrangement;
- the chemical composition.
Polymerization Degree (DP).

DP is one of the most important parameters to determine the physical properties of a polymer. It is defined as the number of monomer units (Mer) for the linear chain of the polymer.

The relationship between molecular weight of the chain \((M_p)\) and the degree of polymerisation is:

\[
M_p = DP \times M_{\text{Mer}}
\]

where \(M_{\text{Mer}}\) is the molecular weight of monomer.
Average Molecular Weight (M_n).

Each chain can have a more or less large number of monomeric units depending on the polymerization conditions.

Thus, for polymers two different average molecular weights were defined:

a) number average molecular weight M_n

$$
M_n = \frac{\sum_{i=1}^{n} X_i \cdot M_i}{\sum_{i=1}^{n} X_i}
$$

where X_i is the number of molecules with molecular weight M_i

(colligative property and end group analysis)
b) weight average molecular weight is defined as:

\[
M_w = \frac{\sum_{i=1}^{n} W_i M_i}{\sum_{i=1}^{n} W_i} = \frac{\sum_{i=1}^{n} X_i M_i^2}{\sum_{i=1}^{n} X_i M_i}
\]

where \(W_i \) is the weight of molecules of molecular weight \(M_i \).

Therefore, \(M_w > M_n \).
c. z average molecular weight (\(M_z\))

\[
\overline{M}_z = \frac{\sum_{i=1}^{n} X_i M_i^3}{\sum_{i=1}^{n} X_i M_i^2}
\]

(ultracentrifugation)

d. general equation of average molecular weight:

\[
\overline{M} = \frac{\sum_{i=1}^{n} X_i M_i^\alpha}{\sum_{i=1}^{n} X_i M_i^\alpha}
\]

\[a=0\ ,
M_n\]
\[a=1\ ,
M_w\]
\[a=2\ ,
M_z\]

e. \(M_z > M_w > M_n\)
Synthetic polymers cover a wide range of molecular weights. The MW distribution (length) influences the properties.
Several natural polymers have fixed length making them quite uniform in behaviour.

Different synthetic processes produce different distributions of molecular weight.

The heavier molecules are prone to be less soluble and to have higher melting points.

Mean number \(M_n = \frac{\text{mass}}{\text{mol}} \)
Mean mass \(M_w = \frac{\Sigma n_i M_i^2}{\Sigma n_i M_i} \)
Molecular Weight and Dispersion - an Example:

Here are:
10 chains of 100 molecular weight
20 chains of 500 molecular weight
40 chains of 1000 molecular weight
5 chains of 10000 molecular weight

\[
\bar{M}_n = \frac{(10 \cdot 100) + (20 \cdot 500) + (40 \cdot 1000) + (5 \cdot 10000)}{10 + 20 + 40 + 5} = 1347
\]

\[
\bar{M}_w = \frac{(10 \cdot 100^2) + (20 \cdot 500^2) + (40 \cdot 1000^2) + (5 \cdot 10000^2)}{(10 \cdot 100) + (20 \cdot 500) + (40 \cdot 1000) + (5 \cdot 10000)} = 5390
\]

Polydispersity = \(\frac{\bar{M}_w}{\bar{M}_n}\) \(\approx 4\)
Determination of Molecular Weight.

• **Gel Permeation Chromatography:**

Solution methodology to determine the distribution of molecular weight of a polymer. Use gel of different porosity to differentiate the macromolecules MW by migration.

![MWD (equivalent polystyrene)](image)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mw</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET 94102001</td>
<td>58,300</td>
<td>29,400</td>
</tr>
<tr>
<td>PET 94301003</td>
<td>39,100</td>
<td>19,700</td>
</tr>
<tr>
<td>PET 94301004</td>
<td>54,000</td>
<td>29,500</td>
</tr>
<tr>
<td>PET 94302001</td>
<td>73,200</td>
<td>33,600</td>
</tr>
<tr>
<td>PET 94302002</td>
<td>69,400</td>
<td>33,100</td>
</tr>
<tr>
<td>PET 94302005</td>
<td>41,600</td>
<td>14,200</td>
</tr>
</tbody>
</table>
Polydispersity Index (PI) = \frac{M_w}{M_n} \geq 1.

It indicates the uniformity of the molecular weight distribution in a given polymer.

When the chains all have the same length the polydispersion index is equal to 1, and the polymer, which has a molecular weight well defined, is defined monodispersed.

Generally, the commercial polymers have a polydispersity index between 1.5 and 2.5.
Physical and mechanical properties of a polymer depend both on polymerization degree and on polydispersion index. Polymers are therefore classified depending on their degree of polymerization DP into:

- oligomers (2<DP<100)
- low polymers (10<DP<100)
- medium polymers (100<DP<1000)
- high polymers (DP>1000).
Properties of Polymer and DP.

Dependence of polyethylene properties on polymerization degree (DP).

<table>
<thead>
<tr>
<th>DP</th>
<th>M</th>
<th>T_r (°C)</th>
<th>Physical Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1000</td>
<td>37.5</td>
<td>oil</td>
</tr>
<tr>
<td>280</td>
<td>4000</td>
<td>93.0</td>
<td>waxy</td>
</tr>
<tr>
<td>500</td>
<td>7000</td>
<td>98.0</td>
<td>malleable solid</td>
</tr>
<tr>
<td>850</td>
<td>12000</td>
<td>104.0</td>
<td>stiff solid</td>
</tr>
<tr>
<td>1500</td>
<td>21000</td>
<td>110.0</td>
<td>stiff solid</td>
</tr>
<tr>
<td>2700</td>
<td>38000</td>
<td>112.0</td>
<td>stiff solid</td>
</tr>
</tbody>
</table>

M, molecular weigh; T_r, softening temperature.

If polymer is linear, the increase of DP causes the raising of the softening temperature (T_r) resulting in the improvement of the mechanical properties of the material.

The increase in chains length, in fact, increases both the bonds which bind together the chains themselves, and the ones which oppose their sliding when the material is subjected to a force.
The characteristics of a polymer depend strictly on uniformity degree of molecular weight, i.e. from dispersion index.

Therefore a typical target for industry is to found production methods which provide polymers with a minimum degree of dispersion.

The shorter molecules, in fact, work as plasticizers and, consequently, decrease the melting temperature and the glass transition temperature, therefore polymer stiffness.

This effect is due to the relative mobility of small molecules which limit an efficient packaging in the crystal formed by assembling longer chains.
Effect of Temperature.

Polymers undergo substantial changes in their properties on temperature.

Crystalline materials at melt temperature convert from solid state to liquid state.

The transition is more complicated in the case of amorphous or non-crystalline materials owing to the reduced mobility of the constituent molecules.
Amorphous polymeric materials, increasing temperature, show two transitions which occurs around two temperature intervals called, respectively

- **Glass transition** \((T_g)\);
- **Melt transition** \((T_r)\).

Glass transition \(T_g\) represents the transfer state from a situation in which the polymer is relatively rigid (glassy state) to a situation of extended movement, represented by a rubbery state.

The melting represents on the contrary the transition from the rubbery state to a liquid state.
in the case of a partially crystalline polymer, the glass transition induces minor alteration to the mechanical properties of the material.

The properties, however, become much worse when polymer melt (T_m, melting temperature).

In the case of a three-dimensional crosslinked polymer there are no glass and melting transitions.

For these materials, in fact, no significant changes of properties are observed increasing temperature, obviously above the limit of chemical stability.

For all types of polymeric materials exist a limit temperature of chemical stability (T_L) beyond which the polymer undergoes irreversible transformations and/or degradations.
The behavior just described are the basis of the classification of the polymers in thermoplastic and thermosetting.

Thermoplastic, having both linear or branched chains, have a T_g and T_r well defined, and are plastically mouldable in the interval between the two transition temperatures.

Thermosetting, on the contrary, formed by crosslinked chains, after a certain stage of the manufacturing process are not more mouldable.

Moreover, heating these materials causes their further hardening, given that, during the processing and forming of the polymer into the mold, the heat applied causes the cross-linking between the chains.
Effect of Temperature (5).

- Crosslinked polymer
- Partially crystalline polymer
- Linear amorphous polymer

Temperature:
- Glassy
- Rubber
- Melt

Log E vs. Temperature:
- T_g: Glass transition
- T_r: Rubber transition
- T_m: Melting temperature
- T_L: Liquid state
The Appearance of a Polymer.

Depends strictly on position and mobility of constituent chains.

Two aspects characterize each filament:

- the chain structure, if it is linear (extended chain), or folded (folded chain), or random coil;
- the nature of interactions between the different chains, originated by Van der Waals, dipole-dipole, ionic, hydrogen bonds, etc. forces.
Chain Structure.

Extended Chain (fibrous polymer)

Folded Chain (crystalline polymer)
Bonds in Polymers.

Primary bonds in polymers are covalent.

Bonds between chains:
- covalent (crosslink between chains)
- van der Waals (week interactions induce crystallization)
- hydrogen

Typical primary bonds:
- -C-C- -C-N- -C-O- -C-H -C=O -C=N- ...

Typical crosslinking:
- -S-S- ...

Typical van der Waals bonds:
- >C=O:···H-N< [a dipolar interaction]
In polymers, the characteristic which conditions mostly the properties at the solid state is the size of molecules.

In fact, in the transition from the liquid state to the solid state:

- the viscosity of a polymeric material increases;
- the macromolecules, owing their sizes, show difficulty to move and to settle down with sufficient order to form a crystal.

Therefore:

- the long chains tangle and polymers cannot reach, unless in rare and specific cases, the limit situations, corresponding to perfect crystalline state and to the fully amorphous state;
- As the temperature changes, polymers pass from the vitreous to semi-fluid state.
Fibers are long, fine, and threadlike materials. Typical examples are represented by natural fibers i.e. cotton, wool, silk, etc.

Peculiar characteristic of fibers is the considerable extension resistance to stretching in the direction of the fiber itself.

At molecular level, fibers consist of long linear polymeric chains, which lie lined in the direction of the fiber itself.

Therefore:

- the resistance of a fiber to the stretching is given by the strength of the covalent bonds of the polymer chain;
- the stability of the structure depends on the intermolecular forces of attraction (hydrogen bonds, dipole-dipole forces, Van der Waals forces) which prevent the folding of the extended chains.
Fibers (2).

High resistance to the extension in the direction of the fiber.

Low tensile strength in the direction perpendicular to the fiber itself.
Fibrous Polymers.

Nylon-6,6
Main Fibrous Polymers.

- Polyamides (Nylon, Kevlar)
- Polyethylene (HDPE, UHMWPE)
- Polypropylene isotactic
- Polyesters (poly-ethylenterephthalate)
- Polyacrylonitrile
- Cellulose
- Polyurethanes
Regular polymers can form lamellar crystals with thickness of 10-20 nm in which the parallel chains are perpendicular to the crystal face.
Crystalline Polymers: Lamellar Structure (2).

- Syndiotactic Polystyrene
- Nylon
- Kevlar
- Polyketons

Lamellar crystal
Amorphous Polymers.

The polymeric chains with branch or side groups irregularly arranged are unable to wrap with a sufficient order to form a crystal.

Highly Amorphous Polymers:
- Poly-methylmethacrylate
- Polystyrene atactic
- Polycarbonates
- Poly-isoprene
- Poly-butadiene
Semi-Crystalline Polymers.

They assume structure in which are present crystalline (lamellar) zones, called crystallites, inserted in amorphous zones.
Semi-Crystalline Polymers and Crystallinity Degree.

Spherulites (from Greek sphaira = ball and lithos = stone): the lamellar regions develop in three directions.

Crystallinity degree is defined as the weight percent of the crystalline state matter to the overall weight. It depend on the:

- structure of composing molecules;
- mechanical and thermal history of the material.
Crystallinity Degree of a Polymer.

In general, the degree of crystallinity:

• is very high in polymers having non-branched linear structure;

• decreases dramatically for strongly asymmetrical or highly branched monomers, or in polymers with frequent interconnections, i.e. crosslinked.

A high degree of crystallinity end up in a higher packing of the chains resulting in increased density, stiffness, hardness, resistance to friction, to wear, to environmental aggression and to creep, i.e. to a slow and progressive deformation of the material exposed to constant stress.
As the fibers they are formed by long and thin molecules. However, they are aligned only when the material is stretched.

Unlike fibers, an elastomer subjected to a force undergoes a deformation and then return to its original shape, once ended the action of the force.

In fact, the polymer chain, finished the stretch, are not extended, but will fall back randomly into their original shape.

This behavior is due to the lack in the molecules of highly polar groups or groups appropriate to form hydrogen bonds.
Elastomers (relaxed and oriented states).
A typical example of elastomer: Natural Rubber (NR) for which the intermolecular interaction is due only to weak Van der Waals forces, due to the all *cis*-configurations of double bonds. In the *trans* isomer of 1,4-polyisoprene, available in gutta-percha, the chain arrangement is instead very smooth; gutta-percha is in fact very crystalline and not at all elastic.
Plastics can be allocated in two main categories:

Thermoplastics

Linear polymers in which the chains are interconnected by Van der Waals forces or by hydrogen bonds. When enough sufficient thermal energy is provided, chains detach themselves from one another and the material melts.

Single molecules
- Soluble
- Little crosslinking
- Soften on heating
- Polymer worked

Thermosets

They have a crosslinked structure which prevents the chains to detach from each other even at high temperature. Therefore, if heated they does not melt but burn (if oxygen is present) or decompose (if in an inert atmosphere).

Rigid Network
- Significant crosslinking
- Hard and brittle
- Decompose (do NOT soften)
- Precursor worked
Examples of Plastic Materials.

Thermoset:
- Epoxide
- Melamine
- Phenolic

Thermoplastic:
- Polyethylene
- Polypropylene
- Polystyrene
- Polyamides
- Polyesters
Some Important Commercial Polymers and Related Introduction Dates.

<table>
<thead>
<tr>
<th>Date</th>
<th>Polymer</th>
<th>Date</th>
<th>Polymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>Styrene-butadiene rubber</td>
<td>1943</td>
<td>Silicones</td>
</tr>
<tr>
<td>1936</td>
<td>Poly(vinyl chloride)</td>
<td>1944</td>
<td>Poly(ethylene terephthalate)</td>
</tr>
<tr>
<td>1936</td>
<td>Polychloroprene (neoprene)</td>
<td>1947</td>
<td>Epoxide</td>
</tr>
<tr>
<td>1936</td>
<td>Poly(methyl methacrylate)</td>
<td>1948</td>
<td>ABS Resins</td>
</tr>
<tr>
<td>1936</td>
<td>Poly(vinyl acetate)</td>
<td>1955</td>
<td>Polyethylene, linear</td>
</tr>
<tr>
<td>1937</td>
<td>Polystyrene</td>
<td>1956</td>
<td>Polyoxomethylene</td>
</tr>
<tr>
<td>1939</td>
<td>Nylon-66</td>
<td>1957</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>1941</td>
<td>Poly(tetrafluoroethylene)</td>
<td>1957</td>
<td>Polycarbonate</td>
</tr>
<tr>
<td>1942</td>
<td>Unsaturated Polyesters</td>
<td>1964</td>
<td>Resin monomeric</td>
</tr>
<tr>
<td>1943</td>
<td>Polyethylene Branched</td>
<td>1965</td>
<td>Polyamides</td>
</tr>
<tr>
<td>1943</td>
<td>Butyl rubber</td>
<td>1970</td>
<td>Thermoplastic elastomers</td>
</tr>
<tr>
<td>1943</td>
<td>Nylon-6</td>
<td>1974</td>
<td>Aromatic polyamides</td>
</tr>
</tbody>
</table>
The Innovation Potential of Fossil Building Blocks Appears Largely Exploited.

Polymer innovation based on fossil building blocks

- Ethylene
- Propylene
- Butadiene
- Benzene
- Toluene
- Xylene
- Methanol

- PED
- PUR
- PIB
- PET
- PA
- SBB
- LDPE
- PMMA
- BR
- PS
- PVC
- PPS
- POM
- PAR
- PTFE
- EPM
- EDPM
- iso.PP
- HOPE
- ABS
- PAN
- Epoxy
- PBT
- Silicone
- LLDPE
- PEEK
- PES
- PI
- PEI
- LCP

Ethylene, Propylene, Butadiene, Benzene, Toluene, Xylene, Methanol
Practical Classification of Polymers.

Based on process determining the properties of an object. Divided into elastomers, fibres, and plastics depending on mechanical properties: stress, strain and module

1. Elastomers
 - Full and fast recover after lengthening, deformation strains < 1000%
 - Initial modulus is 10^3 psi (7 MN·m$^{-2}$)
 - Elastomer Moduli increase increasing temperature
 - At temperature sufficiently low, elastomer is glassy and brittle: rubber at LN temp.

2. Fibres
 - Initial modulus: $0.5\times10^6 - 2\times10^6$ psi ($3\times10^3 - 14\times10^6$ MN·m$^{-2}$), deformation strains less than 20%
 - Deformed under beak load and allowed to relax, fibres recover part of deformation, but part remains permanent
 - Synthetic commercial fibres do not change their properties in the range –50 - 150°C.

3. Plastics
 - Initial Modulus: $0.5\times10^5 - 4\times10^5$ psi ($3.5\times10^2 - 3\times10^3$ MN·m$^{-2}$)
 - From minor deformations % (PS) to 400%, semi crystalline (PE)
 - A temperature increase produces a rigidity reduction and higher elongation at break.
Mechanical Properties of Polymers – Stress-Strain Behavior.

- Load at break of polymers ~ 10% of metals
- Deformation strains for polymers > 1000%
 - for most metals, deformation strains < 10%

Adapted from Callister & Rethwisch 8Ed.
• The state of polymer depends on the TEMPERATURE and TIME selected

• At enough low temperature, all amorphous polymers are stiff and glassy:
 - called glassy state or vitreous state, especially for inorganic materials.

• On warming, polymers soften in a characteristic TEMPERATURE RANGE known as GLASS-RUBBER transition region
 - behave in a leathery manner

• Eisenberg stated “The glass transition is perhaps the most important single parameter which one needs to know before one can decide on the applications of, non-crystalline system.....”

• For amorphous polymers, T_g constitutes their most important mechanical properties.

1. Glassy region, 2. Glass transition
3. Rubbery region, 4. Rubbery flow
5. Viscous flow
Intermolecular Forces.

Hydrogen Bond

Dipole Interaction

Ionic Bond

Van der Waals interactions
Intermolecular Forces.

<table>
<thead>
<tr>
<th>Bond type</th>
<th>Interatomic distance r_m, Å</th>
<th>Dissociation energy, $-E$, kcal·mol$^{-1}$</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary covalent</td>
<td>1 - 2</td>
<td>50 - 200</td>
<td>Occurs between atoms which share electrons; strong strength</td>
</tr>
<tr>
<td>Hydrogen bond</td>
<td>2 - 3</td>
<td>3 – 7</td>
<td>Occurs between molecules with O-H, N-H and F-H bonds</td>
</tr>
<tr>
<td>Dipole interaction</td>
<td>2 - 3</td>
<td>1.5 – 3</td>
<td>Occurs between polar molecules</td>
</tr>
<tr>
<td>Van der Waals</td>
<td>3 - 5</td>
<td>0.5 – 2</td>
<td>Occurs between all molecules; strength depends on size, polarizability.</td>
</tr>
<tr>
<td>Ionic</td>
<td>2 - 3</td>
<td>10 – 20</td>
<td>Occurs between ions</td>
</tr>
</tbody>
</table>
Intermolecular Forces.

Typical Values of the Solubility Parameter δ for some Common Polymers and Solvents

$$(\text{CED})^{1/2} = \text{SP}$$
CED = Cohesive Energy Density

Solubility Parameter and densitites of Common Polymers

$$\delta = \sqrt{c} = \left[\frac{\Delta H_{ev.} - RT}{V_m} \right]^{1/2}$$

Table

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$\delta_1 (\text{cl/cm}^3)^{1/2}$ *</th>
<th>Polymer</th>
<th>$\delta_2 (\text{cl/cm}^3)^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Hexane</td>
<td>14.8</td>
<td>Polytetrafluoroethylene</td>
<td>12.7</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>17.6</td>
<td>Poly(dimethyl siloxane)</td>
<td>14.9</td>
</tr>
<tr>
<td>Toluene</td>
<td>18.3</td>
<td>Polyethylene</td>
<td>16.2</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>18.5</td>
<td>Polypropylene</td>
<td>16.6</td>
</tr>
<tr>
<td>Benzene</td>
<td>18.7</td>
<td>Polybutadiene</td>
<td>17.6</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>19.0</td>
<td>Polystyrene</td>
<td>17.6</td>
</tr>
<tr>
<td>Styrene</td>
<td>19.0</td>
<td>Poly(methyl methacrylate)</td>
<td>18.6</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>19.4</td>
<td>Poly(vinyl chloride)</td>
<td>19.4</td>
</tr>
<tr>
<td>Acetone</td>
<td>19.9</td>
<td>Poly(vinyl acetate)</td>
<td>21.7</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>20.3</td>
<td>Poly(ethylene terephthalate)</td>
<td>21.9</td>
</tr>
<tr>
<td>Methanol</td>
<td>29.7</td>
<td>6,6-Nylon</td>
<td>27.8</td>
</tr>
<tr>
<td>Water</td>
<td>47.9</td>
<td>Polyacrylonitrile</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Solubility Parameter Values

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$\delta (\text{cl/cm}^3)^{1/2}$</th>
<th>Density (g/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>polybutadiene</td>
<td>8.4</td>
<td>1.01</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>7.9</td>
<td>0.85 (amorphous)</td>
</tr>
<tr>
<td>Poly(methyl methacrylate)</td>
<td>9.45</td>
<td>1.188</td>
</tr>
<tr>
<td>Polytetrafluoroethylene</td>
<td>6.2</td>
<td>2.00 (amorphous)</td>
</tr>
<tr>
<td>Polyisobutene</td>
<td>7.85</td>
<td>0.917</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>9.10</td>
<td>1.06</td>
</tr>
<tr>
<td>Cellulose triacetate</td>
<td>13.6</td>
<td>1.28</td>
</tr>
<tr>
<td>Cellulose tributyrate</td>
<td>--</td>
<td>1.16</td>
</tr>
<tr>
<td>Nylon 66</td>
<td>13.6</td>
<td>1.24</td>
</tr>
<tr>
<td>Poly(ethylene oxide)</td>
<td>9.9</td>
<td>1.20</td>
</tr>
<tr>
<td>Poly(vinyl chloride)</td>
<td>9.6</td>
<td>1.39</td>
</tr>
</tbody>
</table>

SI Hildebrand values from Barton. Handbook of Solubility Parameters, CRC Press, 1983

http://cool.conservation-us.org/coolaic/sb/pbp/annual/v03/bp03-04.html
Molar Attraction Constants E.

<table>
<thead>
<tr>
<th>Group</th>
<th>E [(J·cm(^3))(^{1/2})/mol]</th>
<th>Group</th>
<th>E [(J·cm(^3))(^{1/2})/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-CH(_3)</td>
<td>303</td>
<td>-NH(_2)</td>
<td>463</td>
</tr>
<tr>
<td>-CH(_2)-</td>
<td>269</td>
<td>-NH-</td>
<td>368</td>
</tr>
<tr>
<td>(\cdot)CH(-)</td>
<td>176</td>
<td>-N-</td>
<td>125</td>
</tr>
<tr>
<td>(\cdot)C(-)</td>
<td>65</td>
<td>C=N</td>
<td>725</td>
</tr>
<tr>
<td>CH(_2)=</td>
<td>259</td>
<td>-NCO</td>
<td>733</td>
</tr>
<tr>
<td>-CH=</td>
<td>249</td>
<td>-S-</td>
<td>429</td>
</tr>
<tr>
<td>(\cdot)C=</td>
<td>173</td>
<td>Cl(_2)</td>
<td>701</td>
</tr>
<tr>
<td>-CH=aromatic</td>
<td>239</td>
<td>Cl primary</td>
<td>419</td>
</tr>
<tr>
<td>(\cdot)C=aromatic</td>
<td>200</td>
<td>Cl secondary</td>
<td>425</td>
</tr>
<tr>
<td>-O-ether, acetal</td>
<td>235</td>
<td>Cl aromatic</td>
<td>329</td>
</tr>
<tr>
<td>-O-epoxide</td>
<td>360</td>
<td>F</td>
<td>84</td>
</tr>
<tr>
<td>-COO-</td>
<td>668</td>
<td>Conjugation</td>
<td>47</td>
</tr>
<tr>
<td>(\cdot)C=O</td>
<td>538</td>
<td>Cis</td>
<td>-14</td>
</tr>
<tr>
<td>-CHO</td>
<td>599</td>
<td>Trans</td>
<td>-28</td>
</tr>
<tr>
<td>(CO)(_2)O</td>
<td>1159</td>
<td>Six-membered ring</td>
<td>-48</td>
</tr>
<tr>
<td>-OH(\rightarrow)</td>
<td>462</td>
<td>Ortho</td>
<td>-19</td>
</tr>
<tr>
<td>OH aromatic</td>
<td>350</td>
<td>Meta</td>
<td>-13</td>
</tr>
<tr>
<td>-H acid dimer</td>
<td>-103</td>
<td>Para</td>
<td>-82</td>
</tr>
</tbody>
</table>
Random Coil (Random Walk) in Polymers.

For a polymer chain model;
- Consider random steps of equal length, \(\mathbf{a} \), defined by chemical bonds.

Complications:
- Excluded volume effects
- Steric limitations

An ideal polymer chain with 106 repeat units (not unusual), each unit of about 6 Å will have:
- a \(R_{\text{rms}} \) end-to-end distance \(R \) of 600 nm
- a contour length of 600 μm

The chain end-to-end vector \(\mathbf{R} \) “describes” a coil made up of \(N \) jump vectors \(\mathbf{a}_i \).
Random Walk …

\[\overline{R} = \sum_{i=1}^{N} \overline{a}_i \] \{ \text{\(R\) is made up of N jump vectors \(a_i\). The average of all conformational states of the polymer is \(<R>=0\)} \}

\[\langle R^2 \rangle = \langle \sum \sum \overline{a}_i \cdot \overline{a}_j \rangle \] \{ \text{The simplest non-zero average is the mean-square end to end distance \(<R^2>\)} \}

\[\langle R^2 \rangle = Na^2 + 2a^2 \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \cos \theta_{ij} \] \{ (A matrix of dot-products where the diagonal represents \(i=j\) and off axis elements \(i\neq j\))\}

For a freely jointed chain the average of the cross terms above is zero and we recover a classical random walk: \(<R^2>= Na^2\)

The rms end to end distance \(<R^2>^{1/2}= N^{1/2}a\)
Real Chains Have Steric Limitations.

In freely rotating chains ϕ can take any value; $\sigma^2 = 1$.

Polyethylene: $\theta = 109.5^\circ \rightarrow \langle R^2 \rangle = 2Na^2$

With hindered rotation σ^2 depends on the average of ϕ. σ is experimentally determined.
Attilio Citterio

Space Filling?

The random walk and the steric limitations makes the polymer coils in a polymer melt or in a polymer glass “expanded”.

However, the overlap between molecules ensure space filling.
Radius of Gyration of a Polymer Coil.

The radius of gyration R_g is defined as the RMS distance of the collection of atoms from their common centre of gravity.

For a solid sphere of radius R;

$$R_g = \sqrt{\frac{2}{5}} R = 0.632 R$$

For a polymer coil with rms end-to-end distance R;

$$R_g = \frac{1}{6} \left\langle \bar{R}^2 \right\rangle^{1/2} = \frac{a}{6} N^{1/2}$$
Natural polymers (i.e. starch or proteins) are bad substitutes of plastics (low mechanical properties, hydrophilicity).

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Tg</th>
<th>Tf</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>-120°C</td>
<td>120°C</td>
</tr>
<tr>
<td>PCL</td>
<td>-60°C</td>
<td>60°C</td>
</tr>
<tr>
<td>PBSA</td>
<td>-45°C</td>
<td>114°C</td>
</tr>
<tr>
<td>PEA</td>
<td>-30°C</td>
<td>112°C</td>
</tr>
<tr>
<td>PP</td>
<td>-15°C</td>
<td>165°C</td>
</tr>
<tr>
<td>PHBV15</td>
<td>+5°C</td>
<td>145°C</td>
</tr>
<tr>
<td>PHB</td>
<td>+10°C</td>
<td>175°C</td>
</tr>
<tr>
<td>PLA</td>
<td>+58°C</td>
<td>152°C</td>
</tr>
<tr>
<td>EVOH</td>
<td>60°C</td>
<td>190°C</td>
</tr>
<tr>
<td>PET</td>
<td>90°C</td>
<td>270°C</td>
</tr>
<tr>
<td>PS</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>>200°C</td>
<td>0% HR</td>
</tr>
<tr>
<td>Hemicelluloses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polymer Synthesis.

Synthetic polymers are produced by chemical reactions of monomers or multimeric sub-units to form bigger molecules. Modern classification of polymerization is based on polymerization mechanism:

- **Step-growth polymerization**: Condensation reactions
 - bifunctional units of any length connected by a bond formed by a condensed molecule removed (frequently water).

- **Chain growth polymerization**: Addition reactions
 - Monomers are added one by one to existent chains in the polymer

- **Coordination Polymerization**: ionic mechanisms of coordination and ring opening.

- **Ring-opening polymerization**: may be either step or chain reaction.
Step-Growth Polymerization.

Prof. Attilio Citterio
Dipartimento CMIC “Giulio Natta”
http://iscamap.chem.polimi.it/citterio/education/course-topics/
Step-growth Polymerization - Requirements.

Monomer to have difunctional group

1. One having both reactive functional groups in one molecule

$$A \rightarrow R \rightarrow B \rightarrow \ast \rightarrow R \rightarrow X \rightarrow \ast \rightarrow$$

$$\text{HO} \rightarrow R \rightarrow \text{CO}_2\text{H} \rightarrow \ast \left[\text{O} \rightarrow R \rightarrow \text{C} \rightarrow \ast \right] + \text{H}_2\text{O}$$

2. Other having two difunctional monomers

$$A \rightarrow R \rightarrow A \rightarrow + \rightarrow B \rightarrow R' \rightarrow B \rightarrow \left[\rightarrow R \rightarrow X \rightarrow R' \rightarrow X \right] \rightarrow$$

$$\text{O} = \text{C} = \text{N} \rightarrow R \rightarrow \text{N} = \text{C} = \text{O} \rightarrow + \rightarrow \text{HO} \rightarrow R' \rightarrow \text{OH} \rightarrow \left[\rightarrow \text{O} \rightarrow \text{H} \rightarrow \text{H} \rightarrow \text{O} \right] \rightarrow$$
Reactions of this type bond two molecules by elimination (optional) of a small molecule with bonding all units.

- **Monomer have difunctional groups**
 1. one having both reactive functional groups in one molecule
 2. other having two difunctional monomers
- The two reagent molecules can have any length.
- Condensation reactions: when elimination occurs.
- Depends on functionality of reagent groups.

Example:
Two difunctional monomers

The growing polymer (Nylon 75)
Peculiarity of Step-growth Polymerization.

Aspects of Step Polymerization or Condensation:

- Monomers disappear readily in the reaction!
- Any couple of molecules with 2 functional groups can react.
- The polymer mean MW grows rapidly during the reaction.
- Long reaction times are essential to form extended molecules.
- The molecular weight distribution for molecule length can be readily foreseen.

Are the same reactions!

\[
\text{R}_1\text{-NH}_2 + \text{R}_2\text{COOH} \rightarrow \text{R}_2\text{CONHR}_1 + \text{H}_2\text{O}
\]

Amine + Carboxylic acid \rightarrow Amide + Condensation molecule

Types of monomeric units:

- **Monofunctional**: give dimers

 \[\text{o}\]

 \[-A- + -B- \rightarrow -A-B-A-B-\]

- **Bifunctional**: give polymers

- **Trifunctional (or more)**: give network

 \[A_3 + -B-B- \rightarrow \]

 \[B-B- B-B A \]

 \[-B-B B-B A B-B-\]
Two Typical Functional Groups Involved in Step-Growth Polymerization.

- **Ester bond**
 - \(\text{HO}(-\text{CH}_2)_n\text{OH} + \text{HOOC}(-\text{CH}_2)_m\text{COOH} \rightarrow \text{HO}[-(\text{CH}_2)_n\text{O-C-}(\text{CH}_2)_m\text{O}]_k\text{-H} + \text{H}_2\text{O} \)
 - **Polyester**

- **Amidic bond**
 - \(\text{H}_2\text{N}(-\text{CH}_2)_n\text{NH}_2 + \text{HOOC}(-\text{CH}_2)_m\text{COOH} \rightarrow \text{H}[-\text{N}(-\text{CH}_2)_n\text{N-C-}(\text{CH}_2)_m\text{C}]_k\text{-OH} + \text{H}_2\text{O} \)
 - **Polyamide**
Aspects of Step-growth Polymerization.

Consideration on step polymerization:

- Typically have relatively high activation energy.
- Typically are only slightly exothermic.

Most step polymerizations are carried out at high temperatures.

Manufacturing techniques:

- Bulk reactions - homogeneous without solvent.
- Solution reactions - homogeneous in a solvent.
- Interfacial reactions - heterogeneous at the interphase of a liquid-liquid system.
- Etc.
Example: Polymerization of polyethylene terephthalate (Ester Bond):

- Option 1: Interfacial condensation

\[
\text{Cl-C-CCl} \quad \text{H-O-C-COH} \quad \text{HCl} + \quad \text{H}_2\text{O} + \text{ethyleneglycol} \]

\[
\text{Polyethylene terephthalate (PTE: Mylar, Dacron,...)}
\]

Problem: terephthaloyl chloride is very expensive.
Example: Polymerization of polyethylene terephthalate:

- Option 2: Polymerization in solution

Problems:
- the process is slow,
- terephthalic acid is insoluble in common organic solvents,
- terephthalic acid presents an high melting point (>300°C).
Example: Polymerization of polyethylene terephthalate:

• Option 2: Polymerization in solution

Problem: the reaction is too slow.
Solution: Use of a two-step process:

• Step 1: carry out the polymerization with glycol in excess. This accelerates the “esterification” [-COOH → -COO-] adding more reagent. Moreover this:
 • a) decreases the polymerization degree and
 • b) terminates all molecules with hydroxyethyl groups.

• Step 2: the reagents ratio is reduced to stoichiometric. Then, the polymerization continues through reaction of (new relatively big) molecules to obtain high PM molecules.
Bulk Step-growth Polymerization.

Example: Polymerization of polyethylene terephthalate:

- Option 3: Bulk condensation (only fused reagents)

Analogous to condensation in solution but without solvent. The problems are the same. We can also use a further approach:

Step 1: Esterification with a small molecule, methanol.

\[
\text{Terephthalic acid} + \text{CH}_3\text{OH} \rightarrow [\text{needs an high yield}] \text{Dimethyl terephthalate}
\]
Stages in Step-growth Polymerization.

Example: Polymerization of polyethylene terephthalate:

- Option 3: Bulk condensation

Phase 2: Trans esterification - substitute the glycol for methyl groups.

\[
\text{MeO-C-} \text{OC-OMe} + \text{HO-C-C-OH} \rightarrow \text{CH}_3\text{-OH} + \text{HO-C-C-O-C-} \text{H}_2 \text{H}_2 \text{H}_2 \text{OH}
\]

Phase 3: Polymerization by elimination of glycol (condensation):

\[
\text{HO-C-C-O-C-} \text{H}_2 \text{H}_2 \text{H}_2 \text{OH} \rightarrow \left[\text{O-C-} \text{C-O-C-} \text{H}_2 \text{H}_2 \text{H}_2 \text{OH} \right]_n + \text{HO-CH}_2\text{-CH}_2\text{-OH}
\]
Step-growth Polymerization (Comparison of Methods).

Example: Polymerization of poly(ethylene terephthalate):

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Bulk / Fused</th>
<th>Solution</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>Equilibrium hours-days</td>
<td>Equilibrium Min -1 hour</td>
<td>Non-equilibrium Min - 1 hour</td>
</tr>
<tr>
<td>Reaction time</td>
<td>Critical</td>
<td>Significant</td>
<td>unimportant</td>
</tr>
<tr>
<td>Reagent ratio</td>
<td>Critical</td>
<td>Significant</td>
<td>Significant</td>
</tr>
<tr>
<td>Purity requirements</td>
<td>Critical</td>
<td>Atmospheric</td>
<td>Atmospheric</td>
</tr>
<tr>
<td>Pressure</td>
<td>High/Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mechanisms of polycondensation reactions:

- Synthesis of Nylon (polyamides):

The reaction is similar to esterification with O: substituting N.
Mechanism of polycondensation reactions:

- **Formation of Polyurethane:**

\[
\begin{align*}
&\text{HO-}(\text{CH}_2)_4\text{-OH} + \text{O=C=N-(CH}_2)_6\text{-N=C=O} \\
&1,4\text{-butandiol} \quad \text{hexamethylene diisocyanate} \\
\end{align*}
\]

The isocyanate structure shows several resonance forms.

Electrophile: \(\text{R-N=C=O} \)

Nucleophile: \(\text{R'-OH} \)

Polyurethane: \(\text{R-N-C-O-R'} \)
Synthesis and properties:

- The aim of the synthesis of new structures is to change the properties of the material.

Example: melting point of nylon.

Interchain interactions influences the melting point.

With the exclusion of these groups, molecule is polyethylene

Dipoles associated to C=O groups interact feebly

Hydrogen bonds between N-H interact strongly

Chain length influences the melting point.
Kinetics:

Monomer + Monomer → Dimers

Dimers → Trimers

Trimers → Dimer + Dimer

Dimer + Dimer → Tetratmers

Tetratmers → Tetramer + Tetramer

Tetramer + Tetramer → Octamers

Octamers → Octamer + Octamer

Monomers are readily lost but to obtain long molecules needs the completion of all previous steps.
Step-growth Polymerization – Kinetics (2).

It is difficult to model system because rates depend on size – it is better to analyze the system by a numerical approach.

- **We assume:**
 - The reactivity of functional group does not depends on size
 - The reaction rate does not depends on diffusion or viscosity (properties variable during real reactions).

- **A simple reaction could be:**

 \[
 A + B \rightleftharpoons AB + \text{condensed (C)}
 \]

 Direct rate \(R_f = k_f [A] [B] \)

 Reverse rate \(R_r = k_r [AB] [C] \) if the condensed is taken off \(R_r \sim 0 \).

Notice: A and B refer to functional groups, therefore they indicate molecules.
Step-grown Polymerization – Kinetics of m-mers.

• Therefore: \[- \frac{d[A]}{dt} = k_f [A] \cdot [B]\]

• For monomers, \([A]=[B]\) then:
 \[- \frac{d[1]}{dt} = k_1 [1]^2\]
 or:
 \[
 \frac{1}{[1]_t} = k_1 t + \frac{1}{[1]_{t=0}}
 \]

• For dimers:
 \[- \frac{d[2]}{dt} = k_f^1 [1]^2 - k_f^{n,2} [2] \sum [n] + k_r^n \sum [n]\]

• For m-mers
 - m-mers to dimers
 - dimers to (2+n)-mers
 - n-mers to dimers
 \[- \frac{d[m]}{dt} = k_f^{i,j} \sum_{i+j=m} [i][j] - k_f^{n,m} [m] \sum [n] + k_r^n \sum [n]\]
 - i & j-mers to m-mers
 - m-mers to (m+n)-mers
Step-reaction Polymerization – (DP and PM vs. time).

- Defining the polymerization degree as:
 \[DP = \frac{[A]_{t=0}}{[A]} \]
- and: \[p = 1 - \frac{[A]}{[A]_{t=0}} \] is the reaction degree
- By substitution:
 \[\frac{1}{[A]_{t=0}(1 - p)} - \frac{1}{[A]_{t=0}} = k_{pol}t \]
- or using:
 \[DP = \frac{1}{1 - p} \]

\[DP = [A]_{t=0} k_{pol}t + 1 \]

The mean polymerization degree (and mean molecular weight) increases linearly with time!

Probability to form a n-mer:

The probability of n-1 reactions is p^{n-1}.

The probability that a certain monomer has not reacted is $1-p$.

Therefore, the probability to form an n-mer is:

$$P_n = \left(1 - p\right) p^{n-1}$$
Weight fraction (distribution different from numerical fraction!).

Monomer weight = W_0.

Weight fraction = Y_n:

$$Y_n = \frac{\text{weight of n-mer}}{\text{total weight}}$$

$$Y_n = \frac{nW_0N_n}{N_0W_0}$$

$$Y_n = \frac{nN_n}{N} \left(1 - p\right) p^{n-1}$$

$$Y_n = np^{n-1} \left(1 - p\right)^2$$
To obtain high MW, well controlled ratios of reagents are required!

- we define the reagent ratio as:

\[r = \frac{[A]_{t=0}}{[B]_{t=0}} \]

with A and B so that \(r < 1 \).

the chain termination number is:

\[[\text{terminations}] = [A]_{t=0} (1 - p) + [B]_{t=0} (1 - rp) \]

When all defect reagent, A, was reacted, \(p=1 \) but:

\[\overline{DP}_{\text{max}} = \frac{1 + r}{1 - r} \]

If \(r = 0.98 \), then \(\overline{DP}_{\text{max}} = 99! \)

If reagent ratio differs by 2%, the mean molecular weight \(M = M_0 \overline{DP} \) will be only 100 times the monomer weight!

[This can be used to control final MW]
Disadvantages of Step-growth Polymerization.

- The main disadvantage is related to the difficulty to obtain products of high molecular weight because all reactions are in equilibrium and, therefore, above a certain threshold, additional monomers cannot be inserted in the same chain.
- A quite wide molecular weight distribution is observed and this accounts for the poor physical properties of the material.
- Nylon is an exception because, giving sufficiently long chains, shows quite good physical properties.

\[
p = \frac{N_0 - N}{N_0} \quad \text{Or} \quad N = N_0 \left(1 - p\right)
\]

\(\overline{DP}\) is the average number of repeating units of all molecules present

\[
\overline{DP} = \frac{N_0}{N} \quad \overline{DP} = \frac{1}{1 - p}
\]

\(N_0\): number of molecules
\(N\): total molecules after a given reaction period.
\(N_0 - N\): The amount reacted
\(p\): The reaction conversion
Carothers Equation (monomer conversion and DP).

\[
X_n = \frac{1}{1 - p}
\]

(A) Unreacted monomer

(B) 50% reacted, \(\overline{DP} = 1.3 \)

(C) 75% reacted, \(\overline{DP} = 1.7 \)

(D) 100% reacted, \(\overline{DP} = 3 \)

Conversion \(X_n \)
- 50% 2
- 80% 5
- 90% 10
- 95% 20
- 99% 100
- 99.5% 200
Chain-growth Polymerization per (Addition).

Prof. Attilio Citterio
Dipartimento CMIC “Giulio Natta”
http://iscamap.chem.polimi.it/citterio/education/course-topics/
Chain-growth (Addition) Polymerization.

These reactions involve the addition of small molecules at the end of a big molecule once at a time.

Peculiarity of Addition Polymerization:

- Monomers fall during the reaction.
- High molecular weight products are readily formed.
- The yield increases with time but the polymer chain lengths remain constant.
- The reaction mixture contains the monomer, long chains and \(~ 10\) ppb of growing chains. The main IS STATIC!

Addition Polymerization for polyethylene
Note: addition polymerizations (except the ring opening ones) involve monomers containing a C=C group (vinyl).

<table>
<thead>
<tr>
<th>Monomer</th>
<th>Polymer</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>poly(acrylonitrile)</td>
<td>Acrylic carpets, clothes ...</td>
</tr>
<tr>
<td></td>
<td>poly(vinyl chloride)</td>
<td>pipelines, raincoat, insulating, umbrella...</td>
</tr>
<tr>
<td></td>
<td>poly(propylene)</td>
<td>Yarn: ropes, fabrics, carpets household items, ...</td>
</tr>
<tr>
<td></td>
<td>poly(styrene)</td>
<td>Plastic optical components, electrical equipment, ...</td>
</tr>
</tbody>
</table>
Step in the chain-growth Polymerization:

- **Initiation**: formation of a reactive intermediate (slow).

 [Diagram of hydrogen peroxide and heat producing free radicals]

 Free radicals have unpaired electrons (very reactive species).

- **Propagation**: by addition of the monomer to intermediate (fast).

 [Diagram showing propagation of the polymer chain]

- **Termination**: the reactive site is lost.

 [Diagram showing chain termination]

The chain length depends on relative rates of initiation, propagation, and termination!
Chain-growth Polymerization (2).

Type of chain-growth polymerization (partitioned according to the formation mechanism of reactive site):

- **Free-Radical Polymerizations**: The initiator is a free radical. The propagating site is transferred to different sites as polymerization proceeds.

- **Ionic Polymerizations**: instead of a radical an ion is promoting the formation of the active site.

- **Complex coordination Polymerization**: a catalytic complex is involved in the polymerization.
Chain-growth Polymerization (3).

Type of chain-growth polymerizations (based on the reactive site generation mode):

- **Ring Opening Polymerization**: A ring is opened to create a reactive site.
- **Redox reactions**: Electrons are transferred to a multiple valence metal or to another site generating a radical:

![Chemical structure](image)

This represents the terminal functional group of polymer.

cumyl hydroperoxide

(counter ion in solution)
Chain-growth Polymerization (4).

Generation of free-radicals (by covalent bond breaking):

- **Thermal decomposition of Peroxides:** \(R_2 \overset{\Delta}{\rightarrow} 2R\cdot \)
 - Thermally activated, follow a first order kinetic.

- **Photolysis of Halogen derivatives, N-X, O-O, etc.:** \(X_2 \overset{h\nu}{\rightarrow} 2X\cdot \)
 - formation rate \(\propto \) photonic flow and concentration of \(X_2 \)

- **Decomposition of Azo-compounds:**
 \(\text{CH}_3\text{N}=\text{N}-\text{CH}_3 \overset{\Delta}{\rightarrow} \text{N}=\text{N} + 2\text{CH}_3\cdot \)
 Also this decomposition follows a first order kinetics.
 - Several other initiation systems ...
Chain-growth Polymerization
Free-Radical Polymerization: kinetics.

- **Activation of initiator:** Typically a first order reaction, therefore ...

 \[R_2 \rightleftharpoons 2R\cdot \]

 With a direct rate constant:
 \[k_d = k_0 e^{-\Delta E/kT} \]
 \((R_d \text{ is influenced by solvents and } T) \)

 And overall rate:
 \[R_d = k_d [R_2] \]

 Rate constants for initiation (in benzene)

<table>
<thead>
<tr>
<th>Initiators</th>
<th>T (°K)</th>
<th>(k_d \text{ (sec}^{-1})</th>
<th>(\Delta E \text{ (kcal/mol)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenyl-azo-triphenylmethane</td>
<td>25</td>
<td>(4.3 \times 10^{-6})</td>
<td>26.8</td>
</tr>
<tr>
<td>tert-butyl hydroperoxide</td>
<td>80</td>
<td>(7.8 \times 10^{-8})</td>
<td>34</td>
</tr>
<tr>
<td>Diacetyl peroxide</td>
<td>35</td>
<td>(9.5 \times 10^{-5})</td>
<td>32.3</td>
</tr>
</tbody>
</table>
In the initiation step, a free radical is formed by homolytic breaking of a bond of reaction initiator, generally a peroxide or azo-compound.

![Dibenzoyl peroxide reaction](image)

Dibenzoyl peroxide

- Benzoyloxy Radical
- Phenyl Radical

The relative importance of the two intermediates in the initiation reactions depends on monomer type (if reactivity is low, phenyl radical prevails).
Chain-growth Polymerization
Free-Radical Polymerization: kinetic of Initiation.

- Initiation reaction: occurs when the activated initiator reacts with a monomer

\[R^• + M \rightarrow_{k_i} RM^• \]

Initiation rate:

\[R_i = k_i [R^•] \cdot [M] = 2k_d [R_2] f = \frac{-d[M^•]}{dt} \]

\(f \): initiator efficiency = \(\frac{\text{radicals initiating polymerization}}{\text{radicals formed by initiator}} \)

(f typically: 0.3-0.8)

The overall process of initiator activation and reaction starting is the rate determining step of radical polymerization!
The next step of propagation can be arranged in two parts: the addition and the chain transfer.

In the addition step the radical formed from the initiator adds to a monomer molecule, here represented by an alkene, to form a second free radical, which becomes the start of a growing chain. Substituents on both radical and olefins influence the kinetic of the addition:
In the transfer step, the carbon radical reacts with a new monomer molecule providing a new radical:

\[
\begin{align*}
\text{C}^\cdot & \quad \text{C=}\text{C} & \rightarrow & \text{C-}\text{C-C}^\cdot & \quad \text{C=}\text{C} & \rightarrow & \text{C-}\text{C-C-C-C}^\cdot \\
\text{C-C-C-C-C}^\cdot & \quad \text{C=}\text{C} & \rightarrow & \text{C-C-C-C-C-C}^\cdot
\end{align*}
\]

Replication of this step produces the insertion of several monomer molecules forming increasingly longer polymer chains.
Chain-growth Polymerization
Free-Radical Polymerization: Termination and Propagation Kinetics.

Termination reaction: when two radicals interact with disappearance of two active centers. Occurs by:
- dimerization
- disproportionation
- (redox reactions)

Termination rate \(R_t = 2k_t[M^*]^2 \)

- At the stationary state, \(R_i = R_t \) therefore:

\[
2k_d[R_2]^f = 2k_t[M^*]^2
\]

- then, the propagation rate is:

\[
R_p = k_p[M] \sqrt{\frac{k_d[R_2]^f}{k_t}}
\]
Chain-growth Polymerization
Free-Radical Polymerization: Mean Chain Length.

- Mean chain length ν: average number of monomer units polymerized for initiated chain.

\[\nu = \frac{R_p}{R_t} = \frac{R_p}{R_i} \]

\[
\nu = \frac{k_p[M^*] \cdot [M]}{2k_i[M^*]^2} = \frac{k_p[M]}{2\sqrt{k_d k_i[R_2]f}}
\]

The mean chain length can be controlled because it:
- increases decreasing the initiator concentration.
- increases increasing the polymerization rate.
- Increases increasing the monomer concentration.
Previous analysis fails when:

- **Viscosity of solution changes reducing** R_t (because chain terminals are not enough mobile to found termination centers).

- **Chain transfer reactions happens** (when the active center is transferred to a non reactive molecule).

\[
\begin{align*}
M^* + M' & \iff M + M'^* & \text{molecule-molecule transfer} \\
M^* & \iff MH + R\cdot\cdot\cdot R' + (M) & \iff R\cdot\cdot\cdot R' & \text{Hydrogen abstraction (produces branching)}
\end{align*}
\]
Typical values of kinetic constants of radical reactions

<table>
<thead>
<tr>
<th>k_d</th>
<th>10^{-3} sec$^{-1}$</th>
<th>ΔE_d</th>
<th>30 - 50 kcal·mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i</td>
<td>10^3 L mol$^{-1}$sec$^{-1}$</td>
<td>ΔE_i</td>
<td>5 - 7 kcal·mol$^{-1}$</td>
</tr>
<tr>
<td>k_p</td>
<td>10^3 L mol$^{-1}$sec$^{-1}$</td>
<td>ΔE_p</td>
<td>4 - 10 kcal·mol$^{-1}$</td>
</tr>
<tr>
<td>k_t</td>
<td>10^7 L mol$^{-1}$sec$^{-1}$</td>
<td>ΔE_t</td>
<td>0 - 6 kcal·mol$^{-1}$</td>
</tr>
</tbody>
</table>

Reminder:
- The increase of T has a strong effect on the initiation via k_d.
- Controlling T, we control [M*], the rate, and ν.
The polymerization degree: depends on the termination mechanism.

- Combination: \[\text{M}_\bullet + \text{M'}_\bullet \rightarrow \text{M-M'} \quad DP = 2n \]

- Disproportionation: \[\text{M}_\bullet + \text{M'}_\bullet \rightarrow \text{M} + \text{M'} \quad DP = n \]

- Transfer Reactions: they can be changed by addition of molecules which can be involved in transfer reactions but are unable to participate in polymerization (solvent or impurity).
Chain fraction of *n* length: \(X_n \)

- \(X_n = \) product of polymerization probability \([P_p]\) with itself \(n-1 \) times, multiplied by the termination probability to stage \(n = (1-P_p) \)

\[
X_n = P_p^{n-1}(1 - P_p)
\]

[Assuming each addition having a constant probability to occur independently from length]

\[
P_p \quad \frac{\text{propagation per time unit}}{\text{reactions per time unit}} = \frac{N_p}{N_p + N_t}
\]

\[
P_p = \frac{k_p[M]}{k_p[M] + 2k_t[M^*]^2}
\]

Note: \(P_p \) does not change with time.
Chain-growth Polymerization
Free-Radical Polymerization: comparison with Step-growth Polymerization.

Distributions are the same of condensation polymerization but does not change with time ($P_p = \text{constant}$).

(*Note: monomers are not “chains“ and are not present in the mean)
• **Bulk Polymerization**: initiator and polymer soluble in pure monomer.

Example: poly(methyl methacrylate) (PMMA)

![Chemical structure of methyl methacrylate](image)

Heating a bottle of methyl methacrylate in the presence of an initiator affords a transparent plastic (PMMA) preserving the shape of container! The volume decreases because the polymer is more dense.

Lucite and Plexiglas are forms of atactic amorphous PMMA.
Bulk Polymerization of PMMA

This system shows auto-acceleration. As the polymer solution becomes more dense, a gel is formed. The reduced mobility of chains decreases the termination rate and the chain length increases. (This is good for fusion, but bad for molding or extrusion).

• Large scale bulk polymerizations may threaten to become uncontrollable if heat transfer is impossible due to viscosity increase.
• Still, continuous polymerization of 5 cm thickness strip is feasible.
• The most important commercial applications of bulk polymerizations involve those of
 ➢ polystyrene,
 ➢ methacrylates,
 ➢ low density polyethylene.
As the molecular weight of side chain of methacrylate monomer increases, the glass transition temperature of polymer decreases:

- Methyl methacrylate: $T_g = 105^\circ C$
- Ethyl methacrylate: $T_g = 75^\circ C$
- n-Propyl methacrylate: T_g increases by crystallization

(but for >10 carbon atoms in side chain, T_g increases by crystallization)
Bulk Polymerization: general behavior

Advantages:

• Simple
• Does not require any isolation or purification of product. Only contains residues of initiator, the remains of monomer and polymer.
• A big object can be directly prepared.
• The product obtained shows high molecular weight.

Disadvantages:

• Wider distribution of molecular weight than normal for addition polymerizations due to:
 • auto-acceleration
 • heating
 • inefficient mixing
changing P_p with time.
Solution Polymerization: a process variant of bulk polymerization but in the presence of a solvent. The reactive polymer precipitates as it is formed.

Example: polyacrylonitrile (PAN)

\[
\text{H}_2\text{C} = \text{C} + \text{H}_2\text{C} = \text{C} - \text{N} + \text{initiator} \rightarrow \ldots\text{H}_2\text{C} = \text{C} - \text{CH}_3
\]

The monomer diffuses in the precipitate and continues the polymerization.

The disadvantages are generally:

- Acrylonitrile is carcinogenic. Therefore the acrylic fibers (so made) must not contain monomer in finished products.
- The solvent must be removed from polymer before the use.
- PAN is strongly hydrogen bonded and relatively insoluble, used for C fibers.
Suspension Polymerization: a process variant of bulk polymerization but with the monomer suspended in drops. Monomer, initiator and polymer must be insoluble in the suspension media such as water. (O/W and W/O suspension polymerization)

Example: polyvinyl chloride (PVC)

Vinyl chloride + initiator

Drop diameter 10-500 μm

Suspension in water (with polyvinyl alcohol to maintain the suspension).

Heat is removed by water.

A well separated particle suspension is produced. The residual monomer is removed by vacuum evaporation.

Stirring to maintain the suspension.
Emulsion Polymerization: a process variant of suspension polymerization except that the initiator is soluble in suspension media and insoluble in the monomer.

- Drops supply the monomer to micelles where the polymerization occurs.
- The surfactant molecules form micelles.
- Insoluble drops of monomer (as in the suspension polymerization).
- Water + soluble initiator (ion).
- The ratio surface/volume of micelles is so high that the activated monomer never enter into drops. The polymer particles have diameter in the range of 0.05 - 1 μm.
Emulsion Polymerization: polystyrene (PS)

There is a radical for a micelle [based on actual theory]
Emulsion Polymerization: four steps

0-20% of monomer consumed:

20-30% (form micelles):

30-60% (form droplets):

> 60% (monomer supplied by diffusion into particles).
Emulsion Polymerization: polystyrene (PS)

- About half of micelles includes a reactive center.
- The reaction rate depends on micelle concentration which in turn depends on surfactant amount.
- Big micelles take surfactant from smaller (where the polymerization is not started). Finally remain only those where the reaction is taking place.
- The polymerization rate can be increased by addition of Fe$^{+2}$ salts
- This process generates high molecular weight polymers.
Similar to radical polymerization. The main differences are:

- The reactive group is charged,
- Counter ions are present.

\[R^+ + \ce{H-C=CH} \rightarrow \ce{R-C=CH^+} \]

Carbocation

Anionic, cationic, and radical Polymerization:

- Depend on substituents bonded to (C=C) vinyl group
- Electron-withdrawing substituents favor anionic polymerization.
- Electron-donor substituents favor cationic polymerization
- Electrophilic and nucleophilic properties of radical intermediates induce discrimination of electron-poor or electron-rich substrates
Chain-growth Polymerization

Ionic Polymerization: Effect of Alkene Substituents.

Only cationic:

- $\text{H} = C = C = C = CH_3$
- $\text{H} = C = C = CH_3$
- $\text{H} = C = C = \text{OR}$
- $\text{H} = C = C$
- $\text{H} = C = \text{C}=\text{C}$

Only radical:

- $\text{H} = C = C = \text{H}$
- $\text{H} = C = \text{X}$
- $\text{H} = C = \text{X}$
- $\text{X} = C = \text{X}$
- $\text{X} = C = \text{X}$

Only anionic:

- $\text{H} = C = \text{C} = \text{C} = \text{N}$
- $\text{H} = C = \text{C} = \text{C} = \text{N}$
- $\text{H} = C = \text{C} = \text{COOR}$
- $\text{H} = C = \text{C} = \text{H}$
- $\text{H} = C = \text{C} = \text{NO}_2$

- R: alkyl
- X: halogen

Electron Donor- Accepting:

- **Strong e⁻ donor**
- **Weak e⁻ acceptor**
- **Strong e⁻ acceptor**
Chain-growth Polymerization
Ionic Polymerization: Effect of Alkene Substituents (2).

Anionic or Radical:

\[
\begin{align*}
H & \quad H, X \text{ o CH}_3 \\
C=CH & \quad \text{COOR} \\
C=CH & \quad \text{COOR} \\
C=CH & \quad \text{H} \\
C=CH & \quad \text{NO}_2 \\
C=CH & \quad \text{H, o CH}_3 \\
C=CH & \quad \text{CONR}_2
\end{align*}
\]
Mild e− acceptor

Cationic or Radical:

\[
\begin{align*}
HC=CH_2 & \\
HC\equiv CH & \\
H_2C=CH & \\
HC=CH_2 & \\
HC=CH_2 & \\
HC=CH_2 &
\end{align*}
\]
Weak e− donor

Cationic, Anionic or Radical:

\[
\begin{align*}
H & \quad H, o CH_3 \\
C=CH & \quad \text{H} \\
C=CH & \quad \text{H, o CH}_3 \\
C=CH & \quad \text{H} \\
C=CH & \quad \text{H, o CH}_3
\end{align*}
\]
Neutral
Chain-growth Polymerization
Ionic Polymerization: Initiation.

General processes:

Anionic:
\[
R^- + \begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}
\end{array} \begin{array}{c}
\delta^+ \\
\delta^- \\
\delta^-
\end{array} \begin{array}{c}
\text{C} \\
\text{C} \\
\text{N}
\end{array} \rightarrow R\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}
\end{array} \begin{array}{c}
\delta^- \\
\delta^+ \\
\delta^-
\end{array} \begin{array}{c}
\text{C} \\
\text{C} \\
\text{N}
\end{array}
\] carbanion

Cationic:
\[
R^+ + \begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}
\end{array} \begin{array}{c}
\delta^- \\
\delta^+ \\
\delta^+
\end{array} \begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}
\end{array} \rightarrow R\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}
\end{array} \begin{array}{c}
\delta^- \\
\delta^+ \\
\delta^+
\end{array} \begin{array}{c}
\text{C} \\
\text{C}
\end{array}
\] carbocation

Radical:
\[
R^* + \begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}
\end{array} \rightarrow R\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H}
\end{array}
\] carbon centered radical
Cationic Addition Polymerization.

Also the ionic addition polymerization proceeds following a mechanism characterized by an initiation step and a propagation step.

In the case of cationic polymerization, the initiator is an acid, i.e. sulfuric acid, AlCl₃ or BF₃ in the presence of traces of water.

\[
\begin{align*}
\text{Y}^+ + \text{H}_2\text{C} &= \text{CH} \quad \text{Y} = \text{CH}_2\text{C}^+ \quad \text{X} = \text{electron-releasing group} \\
\text{Initiation step} & \\
\end{align*}
\]

\[
\begin{align*}
\text{Y}^+ \text{CH}_2\text{C}^+ + \text{H}_2\text{C} &= \text{CH} \quad \text{Y} = \text{CH}_2\text{C}^+ \quad \text{X} = \text{electron-releasing group} \\
\text{Propagation step} & \\
\end{align*}
\]

\[
\begin{align*}
\text{Y}^+ \text{CH}_2\text{C}^+ \quad \text{H} + \text{H}_2\text{C} &= \text{CH} \quad \text{Y} = \text{CH}_2\text{C}^+ \quad \text{X} = \text{electron-releasing group} \\
\text{Chain reaction} & \\
\end{align*}
\]
In the case of anionic polymerization the initiator is a base, i.e. LiNH$_2$ or organometallic compounds i.e. n-butyl-lithium:

\[
\text{Initiation step} \\
\text{Propagation step}
\]

\[Z: \quad + \quad \overset{\text{Base}}{\text{H}_2\text{C} \equiv \text{CH}} \quad \rightarrow \quad \overset{\text{Carbanion}}{\text{Z-C} \quad \text{C}^-} \quad \overset{\text{X = electron-withdrawing group}}{\text{H}_2 \quad \text{H}} \quad \overset{\text{H}}{\text{X}}
\]

\[\text{chain reaction}
\]
Frequently isotactic or syndiotactic (alternant) structures are observed (reasons are unclear).

Tacticity becomes more casual with the increase of temperature.

Change with the initiator and with solvent polarity.

Kinetics:

\[
DP = \frac{k_p [M]}{k_t [M] + k_{tr}}
\]

- Termination rate
- Transfer rate
The initiator contains an electron-deficient center (electron-acceptor).

May require a proton donor added to activate the initiator. (e.g.: $R_3Al + H_2O [H^+ \text{ donor}]$) or Lewis acids ($AlCl_3, BF_3$).

Examples of **initiators**:

- Strong mineral acids (H_2SO_4, H_3PO_4, \ldots)
- Lewis Acids (e.g.: $AlCl_3, BF_3, SnCl_4, FeCl_3$)
- Iodine ($2 I_2 \rightarrow I^+ + I_3^-$)

- Carbocations (carbonium ions C^+) (e.g.: $\phi_3 C-X, R_3 C^+:HgX_3^-, RC^+O:ClO_4^-, \ldots$)
- Coordination complexes ($TiCl_4 + RCl \rightarrow TiCl_5^- + R^+$)
Charge neutralization

- The ion pair rearranges to form a terminated polymer
 - If the initiator can be regenerated, it can be considered a catalyst!

Example: [polymerization of dimethylethylene (isobutene) with BF$_3$ as initiator]

Counter ion: (BF$_3$OH)$^-$
Charge neutralization

- Alternative termination processes:

Proton regeneration

\[\text{Proton regeneration} \]

\[\text{Charge transfer} \]

To another polymer \Rightarrow a branched polymer

To solvent \Rightarrow dead catalyst

To a monomer \Rightarrow start of a new chain, dead of the old chain.

[common with carbocations]

Poisoning by contaminants (e.g.: O, N or S compounds)
Example of charge transfer reaction (most common termination)

Polymerization of styrene with sulfuric acid (H$_2$SO$_4$):
In addition to proton abstraction, branching and isomerization can occur during polymerization with rearrangement of structure.

Example: polymerization of 3-methyl-1-butene:

\[\text{H} \text{C} = \text{C} \text{H} \text{H}_{\text{CH}_3} \rightarrow \text{H} \text{R} \text{C} = \text{C}^+ \text{H} \text{H}_{\text{CH}_3} \rightarrow \left[\begin{array}{c} \text{H} \\
\text{H} \\
\text{H} \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{CH}_3 \\
\text{H} \\
\text{H} \\
\text{H} \end{array} \right]_n \text{ simple} \]

more stable intermediate

\[\text{H} \text{H} \text{H} \text{CH}_3 \text{R} \text{C} = \text{C}^+ \text{CH}_3 \text{CH}_3 \rightarrow \left[\begin{array}{c} \text{H} \\
\text{H} \end{array} \right]_n \text{ rearranged} \]
Similar to cationic polymerization. Initiation:

- Substituents on vinyl group must be electron-withdrawing or unsaturated both stabilizing the addition of a base to a carbanion:

 \[\text{M}^+ \underset{\text{B}^-}{\text{H}}\text{C}==\text{C}^- \text{R} \rightarrow \text{B}^-\text{C}==\text{C}^- \text{R} \]

 B: a base, normally the strongest is better.

- Alkali metal reactions:

 \[\text{M} + \text{H}\text{C}==\text{C}^- \text{R} \rightarrow \text{C}==\text{C}^- \text{M}^+ \text{ or } \text{M}^+ \text{C}==\text{C}^- \]

- Propagation is similar to the cationic processes.
Termination

- Hydrogen abstraction (as before).
- Transfer of reactive center (as before).
- Formation of a stable anion:

\[
\begin{align*}
R\ce{C\cdotC}^- + \ce{CO_2 \cdot O_2} &\rightarrow R\ce{C\cdotC\cdotC}^- \ce{O^-}
\end{align*}
\]

“Living” Polymerization: if free from impurity, the initiation sites are preserved even when all the monomer is consumed. By addition of further monomer other polymer is formed! (Useful for copolymerization.)
Living Polymerization.

Precision Polymerization

a) Living cationic polymerization (via designed Lewis acids)

b) Living radical polymerization (via designed metal catalysts)

c) Precision polymerization in water

d) Stereoregular polymerization

e) Chemistry of reaction intermediates

f) General principles of precision polymerization control
Phenol-Formaldehyde Resins.

Polymers obtained by polyaddition of formaldehyde to ortho-para carbons of phenol. The material has a tridimensional structure (cross linked) owing to the casual involvement of two different positions.

In this polymerization the phenoxide ion (formed from the weak acid phenol) is the reactive specie.
The electron-poor C of formaldehyde adds to phenol at the positions \textit{ortho} or \textit{para} to oxygen, owing to the high density of negative charge for resonance at these sites. Then, addition to \textit{Quinone methide} can occur.
An example of catalyzed polymerization

- **Peculiarity**
 - Can be stereospecific
 - Heterogeneous or homogeneous.
 - Chain growth by insertion between the catalyst and the chain residue:

 Catalyst

 \[
 \text{Cat-R'} + \begin{array}{c}
 \text{H} \\
 \text{C} = \text{C} \\
 \text{H} \\
 \text{H}
 \end{array}
 \rightarrow
 \begin{array}{c}
 \text{H} \\
 \text{C} - \text{C} - \text{C} - \text{R'} \rightarrow
 \begin{array}{c}
 \text{H} \\
 \text{H} \\
 \text{H} \\
 \text{H}
 \end{array}
 \rightarrow
 \begin{array}{c}
 \text{H} \\
 \text{R} \\
 \text{H} \\
 \text{H}
 \end{array}
 \end{array}
 \]

 \[
 \text{Cat-C-C-C-R'}
 \]
Example: Ziegler-Natta Catalysis (developed in early 1960)

- **Catalyst:**
 - Transition metal compound (e.g.: TiCl$_3$) - the catalyst
 - Organometallic compound of I or III group [e.g.: (C$_2$H$_5$)$_3$Al] - the co-catalyst

Catalytic complex: interaction with π bond

An isotactic polymer is formed.
Mechanism of Coordination Polymerization.

The polymerization reaction occurs with a mechanism which involve a bond between the titanium metal and the alkene (monomer) via a π bond, i.e. with overlapping of the molecular orbital of π bond of alkene to an empty d orbital of the metal.
Next, the monomeric unit inserts between the metal and the ethyl group to form a butyl group linked to titanium:
At this stage, a new alkene molecule can bound to the titanium starting a new addition process:

The insertion proceeds further, with the alkyl group bound to titanium growing at each stage by two carbon units.

Finally, perhaps via the insertion of an hydrogen atom, the polymer chain is removed from the metal.
In the polymerization of monosubstituted alkenes the stereochemical control drive the synthesis to form chains which are or isotactic, or syndiotactic, or atactic.
An isotactic polymer presents the substituent groups (methyl groups in the case of polypropylene, and phenyl group in polystyrene) all chains are sideway lined. Isotactic polymer consists entirely of *meso* diads.

In a syndiotactic polymer the substituents are located alternated from one side and the other. Syndiotactic polymer consists entirely of racemic diads:

The absolute configuration sequence is ...-RSRSRSRS-.... Syndiotactic polymer typically have very different properties from their isotactic analogues.
On the contrary, in an atactic polymer, the orientation of substituent groups is random:
The coordination polymerization with Ziegler-Natta catalysts:

- Affords linear chains;
- Allow the stereochemical control of the process in the presence of asymmetric alkenes.

These peculiar features represent two important advantages on radical polymerization.

Linear polymers, compared with the branched, form in fact materials with high crystallinity, high melting point, higher density and mechanical strength.
Example: Catalyst with Supported Metal

- Similar to heterogeneous reductions

1. Adsorption
2. H Transfer
3. Insertion
Involve opening of a ring with subsequent interexchange

- Example: formation of polyamide by ring opening

\[
\text{Lactam} + \text{H}_2\text{O} \rightarrow \text{Hydration of bond (6-aminocapronic acid)}
\]

\[
\text{H}_2\text{N}-(\text{CH}_2)_6\text{C}=\text{O} \quad \xrightarrow{\text{OH}} \quad \text{H}_2\text{N}-(\text{CH}_2)_6\text{C}=\text{O} \quad \rightarrow \quad \text{H}_2\text{N}-(\text{CH}_2)_6\text{C}=\text{N}-(\text{CH}_2)_6\text{CO}_2\text{H} \quad \rightarrow \quad \text{Nylon-6}
\]

[Note: the condensation can occur also within open rings.]