

Scuola di Ingegneria Industriale e dell'Informazione Insegnamento di Chimica Generale 083424 - CCS CHI e MAT
y POLITECNICO DI MILANO

Stereochemistry.

Prof. Attilio Citterio
Dipartimento CMIC "Giulio Natta"
https://iscamapweb.chem.polimi.it/citterio/it/education/course-topics/

Classification of Isomers.

Isomers

(different compounds with same molecular formula)

Stereoisomers

 (isomers that have the same connectivity but differ in spatial arrangement of their atoms)

Diastereomers

 (stereoisomers that are NOT mirror images of each other)Configurational Isomers.

Different conformations of stereoisomer A

No one conformation of A corresponds to B

The two compounds are not two different conformations
The two compounds are Configurational Isomers

Two Enantiomers.

B

A

The two compounds are Specular Images NOT superimposable

They are defined ENANTIOMERS

Asymmetric (Chiral) Carbon Atom

The Carbon atom is hybridized $s p^{3}$ and is bound to four different substituents

R,S Cahn-Ingold-Prelog Convention

The group with lower priority

Rectus
"clockwise"

R Rectus

S Sinister

Specific Rotation and R,S -Configuration.

No necessary correlation exists between the (R) and (S) designation and the direction of rotation of plane-polarized light.

(R)-(+)-2-Methyl-1-butanol $[\alpha]_{D}^{25}=+5.756^{\circ}$

(S)-(-)-2-Methyl-1-butanol
$[\alpha]_{D}^{25}=-5.756^{\circ}$

Relative vs. Absolute Configuration (5.15A)

(R)-(-)-1-Chloro-3-methylbutane

$$
[\alpha]_{D}^{25}=+1.64^{\circ}
$$

(S)-(+)-1-Chloro-3-methylbutane
$[\alpha]_{D}^{25}=-1.64^{\circ}$

Racemic Forms (Racemate).

Racemic Forms (Racemate).

Racemate $=$ Equimolar mixture of (R) and (S) enantiomer
\longrightarrow Optically inactive

Enantiomers also:

- Have the same chemical properties (except reaction/interactions with chiral substances)
- Show different behavior only when they interact with other chiral substances (enzymes)
- Rotate plane-polarized light in equally in opposite directions - this property of enantiomers is called optical activity
- The property possessed by chiral substances of rotating the plane of polarization of plane-polarized light
- The electric field (like the magnetic field) of light is oscillating in all possible planes
- When this light passes through a polarizer (Polaroid lens), we get plane-polarized light (oscillating in only one plane)

Polarimeter - instrument to measure optical activity

Optical Activity - Measuring on Polarimeter.

(From ADAMSON. A TEXTBOOK OF PHYSICAL CHEMISTRY, 3E. © 1986 Brooks/Cole, a part of Cengage Learning, Inc. Reproduced by permission. www.cengage.com/permissions.)

Optical Activity - Measuring on Polarimeter (2).

(b) Circularly-polarized light
(From ADAMSON. A TEXTBOOK OF PHYSICAL CHEMISTRY, 3E. © 1986 Brooks/Cole, a part of Cengage Learning, Inc. Reproduced by permission. www.cengage.com/permissions.)

Optical Activity - Measuring on Polarimeter (3).

(c) Two circularly-polarized beams counter-rotating at the same velocity (in phase), and their vector sum. The net result is like (a).

(d) Two circularly-polarized beams counter-rotating at the different velocities, such as after interaction with a chiral molecule, and their vector sum. The net result is like (b).

Optical Activity - Calculating Specific Rotation.

Enantiomeric Excess (ee).

Non-equimolar mixture of (R) and (S) enantiomer

Enantiomerically enriched - Optically active

The enantiomeric excess can be calculated from optical rotations:
$\%$ Enantiomeric excess $=\frac{\text { moles of one enantiomer }- \text { moles of other enantiomer }}{\text { total moles of both enantiomers }} \times 100$
E.g. a mixture of the 2-butanol enantiomers showed a specific rotation of $+6.76^{\circ}$

$$
\% \text { Enantiomeric excess }{ }^{*}=\frac{\text { observed specific rotation }}{\text { specific rotation of the pure enantiomer }} \times 100
$$

$$
\text { Enantiomeric excess }=\frac{+6.76^{\circ}}{+13.52^{\circ}} \times 100=50 \%
$$

Pure

Racemate (50:50)

Stereo-selective Synthesis (Kinetic Resolution).

Chiral Drugs (for Chiral Receptor).

Ibuprofen (Isobutyl phenyl pripionic

(S)

Active anti-inflamatory agent

(R)
No anti-inflamatory activity

Acetaminophen (Tylenol)

Methyldopa (Aldomet)

(S)

Anti-hypertensivedrug

(R)

No activity
Penicillamine

(S)

Therapeutic agent
for primary chronic arthritis

(R)

Highly toxic

L-DOPA

Diastereomers have different physical properties: different m.p. and b.p., different solubilities, and so forth.

Total number of stereoisomers will not exceed $\mathbf{2}^{n}$, where n is equal to the number of tetrahedral stereogenic centers.

Naming Molecules with Multi-Stereogenic Centers.

(2R,3R)-2,3-dibromobutane

Diastereomers have different physical properties: different m.p. and b.p., different solubilities, and so forth.

Total number of stereoisomers will not exceed $\mathbf{2}^{\mathbf{n}}$, where n is equal to the number of tetrahedral stereogenic centers.
(superimposable)

2,3-Dibromopentane

Total number of stereoisomers will not exceed $\mathbf{2 n}^{\mathbf{n}}$, where n is equal to the number of tetrahedral stereogenic centers.

2,3-Dibromopentane

Vertical lines represent bonds that project behind the plane of the paper (or that lie in it). Horizontal lines represent bonds that project out of the plane of the paper.

Same structure

2,3-Dibromopentane

B
Not the same (Flipping the projection formula over sideways creates the projection formula for the enantiomer of A)

Not the same
(Flipping the projection formula over sideways creates the projection formula for the enantiomer of A)

Vertical lines represent bonds that project behind the plane of the paper (or that lie in it). Horizontal lines represent bonds that project out of the plane of the paper.

Stereoisomerism of Cyclic Compounds.

trans-1,3-dimethylcyclohexane

(c)

cis-1,3-dimethylcyclohexane

1,2-Dimethylcyclohexane.

trans-1,2-dimethylcyclohexane

1,2-dimethylcyclohexane

1,2-Dimethylcyclohexane.

1,2-dimethylcyclohexane

1,2-Dimethylcyclohexane.

1,2-dimethylcyclohexane

1,2-Dimethylcyclohexane.

1,2-dimethylcyclohexane

diastereomers

Compounds with Stereogenic Centers Other than Carbon or No Stereogenic Centers.

(S)-BINAP

(R)-BINAP

Mirror

Other Chirality in Organic Chemistry.

Other Chirality in Organic Chemistry.

Other Chirality in Organic Chemistry.

