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Acronyms used in Kinetics

 Common symbols

k rate constant (n.b. lower case)

K equilibrium constant (upper case)

[X] concentration of species X

t½ half-life

t lifetime of excited state = 1 / k

 Linking rate constants to reaction numbers

kn rate constant of reaction (n)

k–n rate constant of reverse reaction

of equilibrium (n)

kf (kr) rate constant of forward (reverse)

reaction of equilibrium
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Rate of Reaction

 Definition: Rate of a reaction is the 

rate of change of amount 

(formation) of a product, or rate of 

loss of a reactant

 units: concentration (molar if in 

solution) per unit time. 

 For work at constant volume, can use 

intensive units such as rate of change 

of concentration (mol dm-3s-1)  or 

partial pressure (bar s-1) 

 Can define rate in terms of any 

reactant or product but need to adjust 

for the stoichiometry
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Reaction Rate Laws and Reaction Order

• Reaction rates usually depend on the concentrations or pressures of 
the reactants.

• Consider the reaction  A + 2 B   C + 2D

• The empirical reaction law may be found by experiment to be

• k is the reaction rate constant.  Units depend on the overall reaction 
order.

• The reaction is of order a with respect to reactant A and order b with 
respect to reactant B.   If a =1 or 2 then we say 1st order or 2nd order 
with respect to a

• The overall reaction order is a + b. 

• Reaction order is a convenient classification.  Values can be negative.  
They are often not whole numbers (non-integral).  Products can be 
involved as well.

arate r a bA
A B

dC
k C C

dt
    
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Rate Constants (Coefficients) are the Key

 The rate of a reaction is often proportional to concentration (denoted 

by square brackets)

 A  product(s)

• rate of loss of A [A]

= k [A]

 A + A  product(s)

• rate of loss of A [A]2

= 2k [A]2 (n.b. k or 2k ?)

 A + B  product(s)

• rate of loss of A (B)  [A] [B]

= k [A] [B]

 The rate constant k quantifies this proportionality

 the larger the value of k, the higher the reactivity
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Rate is not the Same as Rate Constant

 Rate of a reaction is the rate of formation of a product, or rate of loss 

of a reactant

 units: concentration (molar if in solution) per unit time

 Rate constant (k, not K) characterizes reactivity rather than the rate 

under specific conditions

 units vary with reaction type

• s–1 for unimolecular decay

• M–1·s–1 (dm3·mol–1·s–1) for bimolecular reactions

 Even (especially?) experts often wrongly use ‘rate’ when they should 

use ‘rate constant’

 reactions with high rate constants are not always fast.
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Rate Constants: which is the upper limit?

 Rate constants can span many orders of magnitude, so the 

exponent is most important:

 k(O2
•– + ascorbate) = 5·0  104 M–1·s–1

 k(O2
•– + nitric oxide)  (3·8 - 15)  109 M–1·s–1

 Upper limit: reactions limited only by diffusion of species (related to 

viscosity h, kdiff  8 RT / (3 h ))

 kdiff for reaction in water ~ 7  109 to 3  1010 M–1·s–1

 Most experimental values at room temperature

 k for electron transfer from nitroarene radical anion to oxygen 

increases ~ 2-fold between 25°C and 37°C
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Diffusion Coefficients for Small Molecules

 In water at 25°C (about 25% higher at 37°C) diffusivity

Solute D / 10–9 m2 s–1 MW

NO• 3·3 ~30

O2 2·4 32

CO2 1·9 44

NO2
• 1·4 46

ethanol 1·2 46

glycine 1·1 75

glucose 0·7 180

sucrose 0·5 342

 Viscosity of blood plasma ~ 1·6  that of water

 Viscosity of cytosol may be ~ 1·2 – 4  water
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Diffusion Coefficients for Large Molecules

Fournier, R. L., 1999, Basic Transport Phenomena in Biomedical Engineering

(Taylor & Francis, Philadelphia)

D  1·0  10–8 M –0.46 m2·s–1 (water, 37°C)

where M is the molecular weight

Haemoglobin      

(~68 kDa):

D ~ 7  10–11 m2·s–1
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Approximate Diffusion Distances
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Diffusion of a Highly-Reactive Radical: NO2
•

 D ~ 1  10–9 m2·s–1

 k ~ 2  107 M–1·s–1 for both 

GSH and urate at pH ~ 7.4

 If [GSH ] ~ 5 mM,

x  ~ 0.2 µm

 If [urate] ~ 0.3 mM,

x  ~ 0·8 µm

 All reactants define t½

 t½ ~ 0.7 / S(k[scavenger])
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Temperature Dependence of Rate Constant: 

Arrhenius Law

A = pre-exponential factor

E = activation energy / 

T = absolute temperature / K

RT

E
- lnA =ln

Hence

)
RT

E-
exp( A =

a

a

k

k

-4

-3,5

-3

-2,5

-2

3,1 3,2 3,3 3,4

ln
(k
/s

-1
)

103/(T/K)

Gradient

= - Ea/R
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Temperature Dependence of Reaction Rates

v

, °KT

(mol s-1) 

v

, °KT

v

, °KTTin.

vmax

Kinetic of typical 
reaction (Arrhenius law) 

The rate increases
2-3 times for a 10°C 
increase in temp.. 

Kinetic of explosive 
reaction
(Tin. = inition temp.)

The rate increases 
normally until Tin, 
then grow drastically. 

Kinetic of enzimatic 
(catalytic) reaction

The rate increases
Untill a maximum 
value, then decreases.
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Temperature Dependence of Simple Gas 

Phase Radical Reactions

k(CH3 + HCl) = (1.34 ± 0.46) × 10–14 (T/300 K)2.73 ± 0.34 exp[(387 ± 99)K/T]
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Logarithms of the room-temperature rate coefficients for the R + Cl2
reactions versus Electronegativity (left) and EA(R) (right) of the radical.
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Reaction Mechanism

• Reaction mechanism describes the 

nature of the reaction route.

• Activated complex theory: the 

reactants in a reaction step come 

together in a loose structure of 

higher energy.  The maximum is 

called the transition state and 

difference from the ground state is 

the activation free energy G≠
a of the 

reaction step.

• Note that the reverse step also has 

an activation energy (G'≠a), in this 

case higher than the forward step.

• The molecularity of a reaction step is 

the number of molecules coming 

together to react in that step

 not the same as reaction order.

Transition state
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Reaction Mechanisms

• The mechanism of a reaction is the sequence of individual events , 

known as elementary steps, that take the reactant molecule(s) to the 

product molecule(s).

• A simple reaction is one whose reaction mechanism consists of a 

single elementary step.

• Except for simple reactions, the overall balanced chemical equation 

gives no information on the mechanism.

Example Ozone decomposition:

The conversion of ozone O3 to oxygen O2 has the overall balanced equation: 

2O3(g)  3O2(g)

A possible mechanism for this reaction has two elementary steps:

O3(g)  O(g) + O2(g)

O3(g) + O(g)  2O2(g)

Net result is the overall, balanced equation. O(g) is an intermediate.
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Intermediates and Determining Mechanisms

• A reaction intermediate is a species that appears in one or more 
elementary steps but not in the overall reaction.

• Thus an intermediate is generated in one or more elementary steps 
and consumed in others.

• The stoichiometric number of an elementary step is the number of 
times it must occur in the reaction mechanism in order to produce the 
correct overall chemical equation.

• A plausible mechanism for a given overall reaction is adopted as an 
hypothesis.

• A rate law for the overall reaction is then deduced from the proposed 
mechanism.

• This deduction is then compared with the known, experimental rate 
law for the overall reaction.

• A proposed reaction mechanism can be considered as valid only if it 
is consistent with the experimentally determined rate law.
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Catalysis

• A catalyst is a substance which increases the reaction rate by 

providing an alternate mechanism, one with a lower activation energy.

• The catalyst appears in one or more elementary steps of this 

mechanism, but not in the overall chemical reaction.

• Thus the catalyst remains intact after the reaction is complete.

Catalysis example:

Overall reaction: 

2H2O2(aq)  O2(g) + 2H2O(l)

Mechanism for Br‾(aq) catalysis:

2Br‾(aq) + H2O2(aq) + 2H+(aq)  Br2(aq) + 2H2O(l)

Br2(aq) + H2O2(aq)  2Br‾(aq) + O2(g) + 2H+(aq)
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Catalysis Profile

reaction pathway

E
n
e
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y

H2O2 + 2H2O + Br2

2H2O2 + 

2Brˉ + 2H+

2H2O + O2

2Brˉ + 2H+

Catalyzed

reaction

Uncatalyzed reaction
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Heterogeneous Catalysis

• Heterogeneous catalysts usually work by adsorption of the reactants on the 

surface of the phase of catalyst (commonly a solid).

• The places where the reactant molecules may be adsorbed are called active 

sites.

• Adsorption facilitates the breaking of bonds in the reactant molecules in order 

to form new ones.

Langmuir Model

• Adsorption is complete once monolayer coverage has been reached.

• All adsorption sites are equivalent and the surface is uniform.

• The probability of adsorption or desorption at a site is independent of 

the occupancy state of adjacent sites.

R•
(g) + M(surface) a RM(surface)
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Langmuir Isotherm

0)1(  


NkPNk
dt
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rates are equal in equilibrium, 

with b = α' / α
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k
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
         where

1
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P = pressure
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M
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N
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Langmuir isothermMN P
N

b P




I. Langmuir, J. Am .Chem. Soc. 38 (1916) 2221
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Chemisorption

Unlike in physisorption, in chemisorption the adsorped molecules 

undergo a chemical change:

R2(g) + M(surface)  a 2RM(surface)

The fractional coverage becomes

In chemisorption the fractional coverage shows weaker pressure 

dependence than in physisorption.

2/1

2/1

)(1

)(

KP

KP


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First Order Reactions

• For a first order reaction the rate depends only from the concentration 

of a specific reagent : 

k1 , units  s–1

t t

0 0

[A] t

,

1

[A] t

d[A]
= dt

[A]
k 

t
1 0

0

[A]
ln ( )

[A]
k t t  

A   products

     1

d
v A t k A t

dt
  

Fundamental term: half life
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First Oder Kinetics

We can always postulate t0 = 0 :

t
1 0

0

[A]
ln ( )

[A]
k t t  

0 1ln[A] ln[A] k t 

A plot of ln[A] versus t 

allows to determine k1

(from the slope of the 

data interpolation line).

ln[A] k1

time, t

ln[A]0
tk]Aln[]Aln[ 10 

1 t

0[A]=[A] e k If k in s-1, (ln 2)/k is the half-life in 

seconds (t1/2). [A] halves each t1/2.
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Many Radical Reactions are Exponential

 A  product(s)

 t½ = half-life

= (ln 2) / k

 0.7 / k

 A + B  product(s)

 Radical concentration 

much less than that of 

target?

 If [B] >> [A]

t½  0.7 / (k [B])
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Examples of Radical Lifetimes


•OH + deoxyribose  dR•

k  2·5  109 M–1·s–1

If [deoxyribose] = 0.1 M

t½  3 ns ( 0.7/(k [dR]))

 dR• + GSH  dRH + GS•

k  3·5  107 M–1·s–1

If [GSH] = 5 mM

t½  4 µs

 GS• + AscH–  GSH + Asc•–

k  6·0  108 M–1·s–1

If [AscH–] = 0.5 mM

t½  2 µs
Intermediates in reaction 

cascade may have very 

low concentrations
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Rate Constants of Radical/Fast Reactions

 Monitor radical, reactant or product vs. time

 most radicals are short-lived, or reaction is fast

 generate radicals in short time (pulse, flash)

 needs high time resolution (micro- to milli-seconds)

 Measure stable product during/at end of reaction

 two competing reactions (known reference)

 Measure concentrations at steady-state

 needs information about competing reactions

 steady-state concentrations may be extremely low
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Monitoring Rapid Reactions: Stopped-Flow 

Spectroscopy

Schematic Representation of Stopped Flow Apparatus

Drive

Lamp

stopper

optical path 
Absorbance
(single  or spectrum)

Time (msec-sec)Fluorescence
Circular Dichroism

Infrared

Drive

Mixing chamber

Reactants

Time resolution limited 

to about 1 ms by 

interval between mixing 

and observation
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Pulse Radiolysis
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Compilations of Rate Constants (Solution)

 University of Notre Dame

Radiation Chemistry Data Center

 web databases from compilations published in the 

Journal of Physical and Chemical Reference Data

 http://www.rcdc.nd.edu/browse_compil.html

 http://kinetics.nist.gov/solution/index.php
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Example: •NO Dependent Oxidation of 

Oxyhemoglobin

HbO2 + NO

Hb3+ + NO3
-

kc = 8.9×107 M-1·s-1

Herold et al, Biochemistry, 40, 3385 (2001).

Advantages

- monitor rapid    (e.g. enzyme catalyzed reactions)

(e.g. free radical/oxidant reactions)

Disadvantages

- expensive

- lag (dead) time (1-3 millisec)
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Combination of Approaches - Simultaneous 

Measurements

e.g. absorbance and oxygen

Light

Magnetic stirrer

Stirring bar

Oxygen 

electrode

cuvette

‘O’ ring

(to seal cuvette)

Detector

(UV/Vis spectrophotometer)

time

O2

time

Abs

- Other polarographic e.g. NO electrode
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Example

• Simultaneous monitoring of absorbance spectrum and oxygen 

concentration:
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Second Order Reactions

Class I.  = k2 [A]2

Class II:    = k2 [A] [B]

k2 Unit : M-1·s-1

1) Class I. 
2

2

d[A]
[A]

dt
k   

t

0

[A] t

,

22

[A] 0

d[A]
= dt

[A]
k  2

t 0

1 1
t

[A] [A]
k 

2

t 0

1 1
t

[A] [A]
k 

2A   products

A + B  products

[A]t

[A]o t

slope = k2

1

1
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Half-life for a Second Order Reaction

The half-life of A (t1/2) can be deduced from: 0[A]
[A]=

2

2 1/2

0 0

2 1
t

[A] [A]
k 

 
0

0 2

[A]
[A]

[A] t +1k


1/2

2 0

1
t

[A]k
 For a second order reaction

1/2

1

ln 2
t

k
 Compare with a 1th order

The half-life for a second order reaction depends on the starting 

reagent concentration. 
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Second Order Reaction (Class II)

c0A, c0B starting concentrations

x = (amount / V) of reacted A
A + B  products

(c0A – x) = [A] at time t

 
   0 0

d Adx
k c A x c B x

dt dt
    

   0 0

dx
k dt

c A x c B x


  

1/ [(c0A - x)·(c0B - x)] = C/ [c0A - x] + D/ [c0B - x]

1 = D [c0A - x] + C [c0B - x]     or    1 = D c0A + C c0B     0 = D x + C x

Hence C = -D e 1/(c0A - c0B) = D  (only if starting conc. different)

-dx / [c0A - x] + dx/ [c0B - x] = (c0A - c0B) kdt = kdt

dln [c0A - x] - dln [c0B - x ] = kdt    or  (c0A - x)/(c0B - x) = eKt per c0A  c0B
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Summary of Kinetic Law for Simple Kinetics

(life-time)t1/2 = ln(2)/k
t1/2 =1/k[A]o

Reaction Order Kinetic Eq. Integrated form Unit

A f B Zero mol l-1

A f B First s-1

A + A f B Second l mol-1s-1

A a B First s-1

A + B f P Second l mol-1s-1

[A]/ 0d dt 

 [A]/ Ad dt k 

 
2

[A]/ Ad dt k 
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Competition Kinetics: Relative Rate 

Constants

 Two competing reactions:

R• + A  measurable product, P k1

R• + B  another product k2

 Measure yield of P at any time:

[P]0 = yield in 

absence of B

Plot [P]0 / [P] vs. [B] / [A]

slope = rate constant ratio k2 / k1

 
rate of reaction of R  producing P

sum of rates of all competitive reactions of R
P






   
 

   
1

0

1 2

k R A
P P

k R A k R B



 

  
      
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Rate-limiting Steps

 Many reactions involve multiple steps

 overall reaction rate may reflect the slowest or rate-determining

step

 Example: reaction of NO• with GSH

 complex reaction forming GSSG and N2O

 reaction may involve:

GS‾ + NO• (+H+)  GSN•OH

2 GSN•OH  GSN(OH)-N(OH)SG  GSSG + H2N2O2

H2N2O2 (hyponitrite)  N2O + H2O

 may obtain apparently different kinetics depending on whether 

loss of NO•, loss of GSH, or formation of N2O is measured, and on 

the concentrations of reactants
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Reaction of NO• with GSH: N2O Formation

 Hogg et al.* measured N2O, 

with [GSH] >> [NO•]: but rate 

not proportional to [GSH] at 

high [GSH]

 Possible explanation: 

hyponitrite decomposition 

becoming rate-limiting

 Hughes and Stedman†

measured pH and temperature 

dependence for: 

H2N2O2  N2O + H2O

k  2–3 10–3 s–1 at pH 7.4, 

37°C

5 mM GSH

k = 4·8  10–4 s–1

50 mM GSH

k = 8·3  10–4 s–1

* FEBS Lett., 382, 223 (1996)
† J. Chem. Soc. 129 (1963)
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Reaction of NO• with GSH: GSH Loss

 Aravindakumar et al.* measured 

loss of GSH with [NO•] >> [GSH]

 pH-Dependence indicated GS–

was reactive form

 Rate constant for GS– + NO• = 

490 M–1 s–1 at 25°C (effective 

rate constant ~ 14 M–1 s–1 at pH 

7·4 since [GS–]  3% of 

[GSH]total)

 t½(NO•) ~ 10 s with 5 mM GSH at 

pH 7·4, 25°C

* J. Chem. Soc., Perkin Trans. 2, 663 (2002)

pH 6·1, 25°C

[GSH]0 0·1 mM

[NO•]0 1·52 mM

Reactivity ~ 100-fold faster 

than suggested from study 

of Hogg et al. (1996)



Free Radical Kinetics:

Steady State
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A + B  a I  P
kf

kr

kP

Preequilibrium Approximation
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Preequilibrium Example

Find the overall rate law for the mechanism:

NO(g) + NO(g)  N2O2(g) (fast equilibrium)

N2O2(g) + Br2(g)  2NOBr(g) (slow)

rate = kP[N2O2] [Br2]

k1 [NO]2 = k-1 [N2O2]    [N2O2] = Kc [NO]2

rate = (kP Kc) [NO]2 [Br2] = keff [NO]2 [Br2] 
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Lindemann Mechanism

A* is the activated reactant, produced by collisions with a spectator 

species M.

A* is then either deactivated by another collisions or transformed into the 

product P.

PA

MAMA

MAMA

k

k

k




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

2

1

1

*

*

*

for unimolecular reaction AP
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Lindemann Rate Law

using the steady state 

approximation
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• 1/kuni vs. 1/[M] is linear with 

a slope of 1/k1 and intercept 

k-1/k1k2

• In the limit of high [M], the 

rate is first order in [A] with 

rate constant k1k2/k-1
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Reversible Reactions: Driving Uphill

 An unfavourable reaction can be driven by removal of a product from 

the equilibrium

 Le Chatelier’s principle (1884, rephrased 1888):
‘Every change of one of the factors of an equilibrium occasions a 

rearrangement of the system … in a  sense opposite to the original change.’

 Example: A + B  a C + D

 If forward rate < reverse rate, equilibrium is to left,

i.e. if kf [A] [B] < kr [C] [D]

 but if C or D is removed by another reaction, equilibrium can be 

driven to the right



Attilio Citterio

Substrate-Complex Kinetics

• S is the substrate to which the 
catalyst C binds.

• SC is the substrate-catalyst 
complex.

• P is the productCPSC
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Conservation of Mass
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Maximum Reaction Rate 

and Enzyme Kinetics

For [S]0 >> Km ,  R0 = k2[C]0 = Rmax

As the substrate concentration is increased, the initial rate of reaction 
approaches a limiting maximum, Rmax. 

mKS

CSk
R




0

002
0

][

][][

Michaelis-Menten Mechanism
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1

• E is an enzyme, which acts as a catalyst.

• S is the substrate

• ES is the complex.

• P is the product.
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Michaelis-Menten Rate Law
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Competitive Inhibition

• I is an inhibitor that competes with S to 
bind to the enzyme E.

• EI is the enzyme-inhibitor complex.
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The slope increases with [ I ], indicating that I is an inhibitor. 



Attilio Citterio

Types of Catalysis

A homogeneous catalyst is present in the same phase as species 

involved in the reaction.

A heterogeneous catalyst is in a different phase from reacting species, 

often a solid.

 solid, heterogeneous catalysis proceeds via physisorption, the 

adsorption of reacting molecules onto the surface of the catalyst, 

without changing their internal bonding or via chemisorption, the 

formation of chemical bonds between the reagent and active sites

on the catalyst surface.

 the fractional coverage  is the proportion of possible absorption 

sites that are actually occupied.
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Ozone Depletion: Uncatalyzed

• The conversion of ozone O3 to oxygen O2 has the overall balanced 

equation: 

2O3(g)   3O2(g)

• A possible mechanism for this reaction has two elementary steps:

O3(g)  a O(g) + O2(g)

O3(g) + O(g)  2O2(g) (slow)

• The rate law is (with no catalyst):

Rnc = knc [O][O3]
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Product Removal can Drive an Unfavourable 

Equilibrium

 Glutathione often ‘repairs’ drug radicals more efficiently than redox 

properties predict:

drug•+ + GSH  drug + GS• (+ H+) K << 1

 Drug radical often much weaker oxidant then GS•

 Removal of product (GS•, e.g. by O2 or ascorbate) drives 

unfavourable equilibrium to the right

GS• + GS–  (GSSG)• –

(GSSG)• – + O2  GSSG + O2
• –

GS• + AscH–  GSH + Asc• –
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Unfavourable Radical ‘Repair’ by GSH

The radical-cation of aminopyrine

(structure below) reacts rapidly with 

GSH:

AP•+ + GSH  AP + GS• (+ H+)

K < 10-4 yet reaction proceeds in < 1 s 

because GS• is removed from the 

equilibrium

Wilson et al., Biochem. Pharmacol., 35, 21 (1986)
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Steady-state Concentrations

 At a steady-state, rate of formation = rate of loss

 Superoxide radicals, no superoxide dismutase:

 O2
•– rate = 0·6 µM s–1

2 O2
•– + 2 H+  H2O2 + O2 rate = 2k [O2

•–]2

At steady-state: 6  10–7 = 2·4  105 [O2
•–]2

[O2
•–]  1·6 µM (n.b. here ‘[O2

•–]’ = [O2
•–] + [HO2

•])

 With 3 µM superoxide dismutase (SOD):

 O2
•– rate = 0·6 µM·s–1

O2
•– + SOD  ½(H2O2 + O2) rate = k [O2

•–] [SOD]

At steady-state: 6  10–7 = 2·3  109 [O2
•–]  3  10–6

[O2
•–]  90 pM

Cadenas & Davies Free Radical Biol. Med., 2000, 29, 222



Free Radical Kinetics: 
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Radical Chain Reactions

The mechanisms of radical chain reactions involve three kinds of 

elementary steps:

 Initiation step: produces radical(s) from reactants

 Propagation step: produces products and more radicals

 Termination step: radicals combine to form non-radical products.

Example: C2H6  C2H4 + H2
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Rate Law: C2H6  C2H4 + H2
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HBr Example

Overall reaction: 

H2(g) + Br2(g)  2HBr(g)

Possible mechanism:

Br2(g)   2Br(g) (fast) 

Br(g) + H2(g)   HBr(g) + H(g) (slow)

Br2(g) + H(g)  HBr(g) + Br(g) (fast)

The overall rate law is: 

  2
1

22
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12 BrH
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More on Hydrogen – Bromine Reaction 

• Overall reaction H2 + Br2 → 2HBr

• Complex rate law suggests a complex 

mechanism.

• Generally accepted mechanism

(1)   Br2 → 2Br• Initiation

(2)   Br• + H2 → HBr + H• Propagation

(3) H• + Br2 → HBr + Br• Propagation

(-2)  HBr + H•  → Br• + H2 Retardation

(-1)  2Br•  → Br2 Termination

• Note that there are 2 radical intermediates H• and Br• (the chain 

carriers).

• We can apply the steady state hypothesis to both of them.

[HBr]'k'+][Br

]][Br[Hk'
=

dt

d[HBr]

2

3/2

22
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Hydrogen – Bromine Reaction (cont.)

Eq (i) Overall rate

Eq (ii) and Eq (iii):

apply steady state 

approxm to [H•] 

and [Br•].

Eq (iv): add Eq (ii) 

and Eq (iii).

Hence Eq (v) for 

[Br•].

Eq (vi): substitute for 

[Br•] in Eq (ii) and 

solve for [H•].

Eq (vii): substitute for 

[H•] and [Br•] in Eq 

(i), cancel out terms 

and rearrange.
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Ozone Depletion: Catalyzed
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Redox Chain Reaction
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Nitroxides are used as radical traps of 

carbon-centred radicals
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Radical Polymerization

Radical polymerization is a reaction in which a polymer chain forms from 

monomer units, initiated by creation of a monomer radical.
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Moad G, Solomon DH. The chemistry of free radical polymerization. London: Pergamon, 1995.
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Free Radical Polymerization Mechanism

Rifare ISIS
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Initiation and Propagation

(PhCOO)2 → 2 PhCOO →   Ph + CO2

Initiation:

Propagation:
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Termination by Coupling or by 

Disproportionation

Termination by coupling

Termination by disproportionation
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Polymerization Rate Law
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Ceiling Temperature
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Branching Reactions
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A branching reaction is one in which a single radical species reacts to 

produce  radical species, where 2 is the branching efficiency.
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Kinetics of Free-Radical Polymerization

The process is divided into:

 Initiation: Formation of the radicals from catalyst and their first reaction 
with monomer

 Propagation:  Subsequent reaction with many monomer units to form a 
chain

 Termination: Loss of the radical by combination of two or reaction with 
impurity to finish growth of the chain.

Other important factors are:

 Inhibition: Active species, including dissolved oxygen, which rapidly react 
with and kill radicals.  most monomers contain some inhibitor to stabilize 
them during shipping.

 Trommsdorff effect: Autoacceleration can occur as viscosity increases 
slow the mobility of the large chains but allow monomers to remain 
mobile.  Propagation continues but termination slows.

 Chain transfer: A molecule picks up the radical, terminating a chain but 
then starts a new chain.  Like baton-passing in a relay race, the kinetics is 
unaffected but the individual chain length is reduced. 
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Branching

Transfer of the radical center to another molecule and evolution.
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Mechanism of Free Radical Polymerization

Initiation:

In2 → 2 In•

In• +  CH2=CH-X  →  In-CH2CH•-X

(R• +  M  →  M1
•)

Propagation:

M1
• +  M  →  M2

•

M2
• +  M  →  M3

•

……………

Mn
• +  M  →  Mn+1

•

Termination:

Mx
• +  My

• →  Mx-My

Mx
• +  My

• →  Mx±H +  My±H

kd

ki

kp

kp

ktc

ktd

(combination)

(disproportionation)

(poli-addition)

(mono-addition)
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Free Radical Polymerization: Kinetic 

Aspects

 
 iM

2 Ii d

d
r f k

dt
  

Steady State Assumption

 
 

M
M Mp p

d
r k

dt

     

M
2 M Mt t

d
r k
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

 
            

PROBLEM:

We don’t know [M•]

SOLUTION:

Assume a steady state 

concentration of 

transient species 

[M•] = constant

This means that radicals 

are consumed at the same 

rate as they are generated
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Free Radical Polymerization: Kinetic 

Aspects – Rate of Propagation

Rate of Propagation = Rate of Polymerization

Normal eqn.:

Extra frill:

pp Rr 

substituting:
 

 
1/ 2

I
M

d

p p

t

f k
r k

k

 
  

 

But  [ ] is not constant.:
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 
I
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d
k

dt
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e

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HENCE
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1/ 2
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Partial Conclusions

1. IF WE WANT TO INCREASE Rp

INCREASE [M] OR [I]

BUT, CHANGING [I] ALSO CHANGES THE MOL. WT. !

2. Rp ~ kp / kt
1/2

FOR ETHYLENE AT 130°C AND 1 BAR PRESSURE

kp / kt
1/2 ~ 0.05

FOR ETHYLENE AT 200°C AND 2500 BAR PRESSURE

kp / kt
1/2 ~ 3.0

LDPE is made at high pressure.  Propagation increases with P&T but

termination doesn’t (much).
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Tromsdorff Effect

At high conversion, polymerization takes off as high viscosity slows 

diffusion of large chains but not monomers and so slows termination 

but not propagation.  This happens when the monomer is 

concentrated in the starting solution.
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Glass Formation

• In a bulk polymerization, increasing molecular weight will lead to 

solidification of the resin before all the monomer is consumed.

• If the material is not then annealed above the glass transition, trapped 

radicals and monomer will slowly react over subsequent years.  This 

can lead to slow shrinkage and, possibly, fracture.

• Most polymers are more dense than the monomer, so shrinkage 

during polymerization always occurs.  The amount of shrinkage is 

roughly proportional to the fraction of double bonds in the monomer 

molecule.

• This causes surface roughness in the glass-fiber/unsaturated 

polyester moldings used for car body parts and debonding in acrylate 

composite dental fillings.  Unsaturated polyester resin is a solution of 

short polyester chains containing double bonds in styrene. 
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Conversion of Monomer

Definition:

   
 
0

0

M M Amount of monomer used up

M Amount of monomer at start




In initial stages of reaction we can assume [I] = [I0] = constant

   
 

M I
M

d
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t

d f k
k

dt k
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   
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integrating
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Average and Kinetic Chain Length

Kinetic chain length definition

n =   

Rate of monomer addition
to growing chains

Rate at which chains
are started

This is the average number of 

monomers polymerized per 

chain radical at a particular 

instant of time during the 

polymerization.

Average kinetic chain length

n =   
# of monomer reacted

# chains started

For example, if we have:

1. 100 chains are started

2. 1,000,000 monomers are reacted 

In this time period

The average degree of polymerization 

of these chains is:

1,000,000/100 = 10,000
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Kinetic Chain Length

There will be some obvious errors (e.g. what about chains that were 

initiated, but did not terminate just before the start of the chosen period?)

But these decrease as t → small

In the limit of a time period dt

 

   
1/ 21/ 2

M

2 I

p p

i d t

r k

r f k k
n  



 

 
   

1/ 2

1/ 2

M
      c.f.   M I

 I
prn   

The degree of polymerization then depend upon the mechanism of 

termination:

         - disproportionation

2        - combination 

n

n

x

x

n

n




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Instantaneous Number Average Chain Length

What if termination occurs by both mechanisms?

Define an average number of dead chain per termination reaction:

Notice that molecular weight can be increased:

• by reducing the initiator, but this slows the reaction,

• or by increasing the monomer concentration but this leads to a Tromsdorff effect.

Free radical molecular weight distributions tend to be very broad  (Mw/Mn=20) because 

rates change with extent of reaction (Condensation ~2 ; Anionic 1-1.2  “Poisson dist.”)

Rate of dead chain formation

Rate of termination
 

 

 

 
2

2

2 2td tc td tc

ttd tc

k k M k k

kk k M




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Heat of Polymerization of Common Olefins

Monomer DHp(kJ·mol-1)*

Ethylene 94.9

Propylene 85.7

Isobutene 51.4

1,3-Butadiene 72.7

Isoprene 74.4

Styrene 69.8

-Methylstyrene 35.1

Vinyl chloride 95.7

vinyliden chloride 155.5

tetrafluoroethylene 155.5

Methyl acrylate 78.6

Methyl methacrylate 56.4

Vinyl acetate 87.8

*with reference to the 

conversion of liquid 

monomer to 

amorphous or slightly 

crystalline polymer
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Propagation Rate Constants in Radical 

Polymerization

 

Monomer Kp (M-1·s-1)  log A E 

        (60°) (M-1·s-1) (kcal·mole-1 ) 

Acrylamide 18.000a - - 

Vinyl chloride 12.300 6.5 3.7 

N,N-Dimethylacrylamide 11.000b - - 

Vinyl acetate  3.700 8.4 7.3 

Methyl acrylate  2.090 8.0 7.1 

Acrylonitrile 1.960 - - 

Methyl Methacrylate  734 7.0 6.3 

Styrenec 145 6.7 7.3 

Butadiene 100 8.1 9.3 

Isoprene 50 8.1 9.8 

a at 25°C.  b at 50°C. c Also reported k (60°)= 176; logA = 7.0, e E =32.6. 
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Chain Transfer Processes

Chain transfer: interception of 

propagating radical by different 

agents: solvent, monomer, 

added species. 

C = ktr/kp

CI = ktrI/kp; CS = ktrS/kp; CM = ktrM/kp

0

1 1 [ ]

[ ]
s

I
C

DP DP M
 

The value of chain transfer 

constant is deduced from a 

Mayo plot:

R.

Telomers 

R-C-C•

Polymers

R-C-C-C-C•

kn
tr

k2
tr

k1
tr

R-C-C(C-C)n-C-C.

In.

C = Cn

ka

k'a

kp

kd
dimers

kd
dimers

kd

dimers

ki

C = C

C = C

Chain transfer constant:
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Determination of Chain Transfer Rate 

Constants

Mayo equation:

0

1 1 [Transfer Agent]

[Monomer]
s

n n

C
DP DP

 

DPn = polymerization degree WITH the transfer agent

DPn
0 = polymerization degree WITHOUT the transfer agent

Cs = Chain Transfer Rate Constant

• •
•
•
•
• •

•
•

1/DP0

1
/D

P

[S]/[M]

cs

Chain transfer agents are used to keep MW down.

• Hydrogen in Ziegler polymers

• Mercaptans in free radical reactions
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Chain Transfer: Kinetics Consideration

R’-H  +  Mx
• → MxH  +  R’•  

M
R'-H Mtr tr

d
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dt
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Effect of CTA on the Polymerization Degree 

of Styrene

BENZENE

(Cs = 0.02)

CCl4 (Cs = 110)

N-Butyl mercaptan (Cs = 210,000)

no CTA

[Transfer Agent]

[Styrene]

1
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Time

Hindered phenolsCTA behave differently from inhibitors!
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Molecular Weight Distribution on 

Monomer/CTA Ratio (MMA/C12H25SH)
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Living and Controlled Polymerisations

Controlled or 'Living' free-radical polymerizations and are based on two 
principles: reversible termination or reversible transfer.

 Living systems

 constant number of polymer chains

 no permanent chain stopping reactions

 dormant and active state 

 control of chain-growth

 narrow MWD (Poisson)

 <Mn> vs. monomer conversion is linear

 Controlled systems

 side reactions do occur

• however still control of end groups, topology, monomer sequencing
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How to Realise a Living System

 Reversible activation

 Chain transfer processes

 Combination of both

 Reversible homolytic cleavage
 Nitroxide-Mediated LRP

 Transition Metal Mediated LRP 

 Chain transfer processes
 Addition Fragmentation

 RAFT

 Catalytic Chain Transfer Polymerisation

 Combination of both
 Iniferters

Pn
(+  C) (+  D)Pn*

kact

kdeact
 

Pn PmPm* Pn*+ +

K
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Main Reaction Involved in Representative 

“Living” Polymerizations

• The four main radical processes in NMCRP (a) , ATRP (b), DT (c) 

and RAFT (d):

(a)

(b)

(c)

(d)

(Mn is a transition metal complex with a dn electronic structure)

Matyjaszewski, K. (Ed.) Controlled Radical Polymerization; ACS Symposium Series No. 685; Washington DC, 1997
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Reversible Activation of Dormant Polymer 

Chains (NMCRP).

Dissociation of a typical alkoxyamine into a carbon-centered radical 

(ethylbenzene radical) and a nitroxide (TEMPO).

Solomon DH, Rizzardo E, Cacioli P. 1986; US patent 4,581429. 

Hawker CG, Bosman AW, Harth E. Chem. Rev. 2001, 101, 3661. 
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Mechanism of Nitroxide-Mediated CRP. 

R-T represents an alkoxyamine, T• represents a nitroxide.

R-T    a R• + T• (de)activation of alkoxyamine (1)

R• + M  P1• propagation (2)

Pn-T     a Pn
• + T• (de)activation of dormant chains (3)

Pn
• + M   Pn+1

• propagation (4)

Pn
• + Pm

•  Pn+m termination (5)

Pn-T   Pn
= + T-H     decomposition (6)

2 M   DIMER

DIMER + M   P1
• + R• thermal self-initiation(7)

I     2 P1
• initiation (8)

kact

kdeact

kp
1

kact

kdeact

kp

kt

kdec

kdim

kdimM

kd, f
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CRP Polymerization: Nitroxide Structure

TEMPO
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Reversible Addition-Fragmentation chain 

Transfer (RAFT) process

Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. 

F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559-5562.

X = Monomer conversion
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Schematic representation of the proposed 

RAFT mechanism.

It should be noted that all reactions are equilibria, and that in these 

equilibria any radical can react with any dormant species/RAFT agent.

a) Addition of a polymeric, initiator derived radical to the initial 

transfer agent 1, forming intermediate radical 2. The intermediate 

radical can either fragment into the two species it was composed 

from, or into dormant species 3 and a small, expelled radical A•.

b) Reinitiation of the polymerization by addition of the expelled 

radical A• to monomer, rather than back reaction with 3 forming 1. 

For this assumption to hold, A• must be a good leaving group 

capable of reinitiating polymerization, so ki[M][A•] >> k-β[3][A•]

c) Equilibrium between active propagating chains and dormant 

chains 3 and 5 through intermediate radical 4.

Barner-Kowollik C, Davis TP, Heuts JPA, Stenzel MH, Vana P, Whittaker M. 

J. Polym. Sci. Polym. Chem. 2003, A41, 365. 
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The Various RAFT Moieties

RAFT agent type X A

dithioester Alkyl-, aryl
Usually a tertiary alkyl 

moiety substituted with 

an electron-withdrawing 

group

xanthate Alkyl-O-

trithiocarbonate Alkyl-S-

dithiocarbamate
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Kinetic scheme of a bulk polymerization in 

the presence of a RAFT agent

I is the initiator, Pi· is a radical with degree of polymerization i, M is the 

monomer, Pi a dead chain with degree of polymerization i, X-R the RAFT agent 

and Pi-X a dormant chain with degree of polymerization i.

I 2 P1
● initiation ( 1)

Pi
● +   M Pi+1

● propagation (2)

Pi
● +   Pj

● Pi+j termination by combination (3)

Pi
● +   Pj

● Pi +  Pj termination by disproportionation (4)

Pi
● +   M Pi +  P1

● transfer to monomer (5)

Pi
● +   X-R Pi-X  +  P1

● transfer to RAFT agent (6)

Pi
● +   Pj-X Pi-X  +  Pj

● transfer to polymeric RAFT agent (7)

kd

kd

ktc

ktc

ktrM

ktrRAFT

ktrRAFT
p
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Chain Transfer Agent (CTA)
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Atom Transfer Radical Polymerization 

(ATRP) 

ka = activation

kd = deactivation  
A)

B)

Wang J-S, Matyjaszewski K. J. Am. Chem. Soc. 1995, 117, 5614.

Kamigaito M, Ando T, Sawamoto M. Chem. Rev. 2001, 101, 3689. 
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Transition Metal Mediated Radical 

Polymerisation

Matyjasewski, JACS (1995), p5614

Sawamoto, Macromolecules, p1721

Ru2Cl2(PPh3)3 / CCl4 / Al(OiPr)3
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Catalytic Chain Transfer Polymerization 

(CCTP)

• Certain Low-Spin Cobalt 

Complexes

• Typical [Mon]/[Co] ratio of ca. 106

CoBF
R = Methyl

Phenyl

Furyl
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CCT with Different Monomers 

CS = 30,000

ktr = 1.4×107

CS = 600

ktr = 1×105

CS = 800,000

ktr = 1×106

T.P. Davis, H. Heuts, Macromolecules, 1999
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CCT Polymerization of MMA by Cu catalyst

Polymerization System

INITIATOR             MMA                                                  PMMA

Initiator / CuBr / ligand = 1:1:2

Solvent: 60% toluene
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CCT Polymerization Kinetics of Styrene

MnTh MnExp PDI

90°C 4,640 5,000 1.14

60°C 5,000 5,200 1.12

40°C 4,500 4,490 1.13

25°C 3,920 3,400 1.16

time / min

ln
([

M
] 0

/ 
[M

])

0        100      200      300      400       500      600     700
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http://www.warwick.ac.uk/polymers
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CCT Water Polymerization at 25 °C

Kinetic at 25°C (•) and at 35°C (♦)

M/I/Cu(I)/Cu(II)/L = 10/1/0.5/0.5/3

Cu/I:  1/1      1/20   1/1000

0,5
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Silica Gel Supported Polymers

A. Marsh, A. Khan, M. Garcia, D. M. Haddleton Chem. Commun. 2000, 2083

CuBr, ligand, 

PhMe, heat

Monomer

7 

8 

7 / 8

Ligand

NPMI 

NPMI 

NPMI

Load (mmol/g)

1.51 

1.11 

1.04

Initiator 

Weight growth (%)

188

117

105
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Mechanism of AFCT free radical polymerization, 

through b-scission or homolytic substitution.
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Radical Copolymerization

X• + A = B            X - A - B• X - A - B - A - B• Homopolymer

X - A - B - A' - B'•

X - A - B -(A'-B')2
• -A-B-A'-B'-A-B-A'-B'•

Homopolymer

k12 A' = B'

k22 A' = B'

A = B

k21

k12 A' = B'

A' = B'

Copolymer

A = B

X - A - B - A' - B'- A - B•

k11

k22

r1 = k11/k12

r2 = k22/k21

Reactivity 

Ratio

A = B A' = B' r1 r2

Styrene Methyl methacrylate    0.5 0.5

Styrene Acrylonitrile 0.4 0.04

Styrene Maleic Anhydride 0.04 0

Styrene Tetrachloroethylene   185 0

Acrylonitrile Butadiene 0.25 0.33

Acrylonitrile Vinyl chloride 3.28 0.02

Acrylonitrile 1-hexene 12.2 0

Acrylonitrile Butyl Acrylate 1.0 1
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Radical Copolymerization

• Terminal or Ultimate model

• Reactivity ratio’s










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111
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~~
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11

MMM

MMM
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MMM

k

k

k

k

ii
i

ij

k
r

k
 Where i and j are 1 or 2, 
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Intrinsic Copolymerisation Equation
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Integrated Copolymerisation 

Equation:
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Conditional Probabilities in TM

• Conditional probabilities are used to describe copolymer composition 

and the monomer sequence distribution
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Penultimate Model

• now 4 reactivity ratio’s are defined
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r  Where i,j and k are 1 or 2, 

and j   k

• Explicit Penultimate Model

Implicit Penultimate Model
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