

Department CMIC Lecture 5b – FR5b

Free-Radicals: Chemistry and Biology

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta" http://iscamap.chem.polimi.it/citterio/education/free-radical-chemistry/

1. Introduction

- Current Status of Radicals Chemistry
- What is a Radical
- Free Radicals and Life
- 2. Historical Aspects
- 3. Electronic Structure and Bonding
- 4. Active Oxygen Specie,
 - O₂, O₂···, HO₂·, ¹O₂, H₂O₂, HO·
 - Chemistry
 - H₂O₂ and peroxides

5. Radical Reactions

- Atom transfer
- Addition to multiple bonds
- Homolytic Aromatic Substitution
- Electron Transfer (oxidation-reduction)

6. Thermodynamics

7. Free Radical Kinetics

- First-order Reaction
- Second-order Reaction
- Steady-State
- Chain-reactions
- Redox chain reactions
- Inhibition

8. Radiation Chemistry

- Tools
- Specie: e⁻(aq), H[•], HO[•], H₂O₂, H₂, O₂^{•-}
- Pulse Radiolysis/Flash Photolysis

9. Lipid Peroxidation

- Chemistry
- Measurement
- Effects

10. Antioxidants

- Preventive
- Chain-breaking
- Small molecule (Vit. C/E, CoQ, Urate).
- Enzymes
- Chelates

11. Iron and Free Radical Chemistry

- Reactions
- Complexes and redox chemistry
- 12. DNA and Protein (As radical targets)

13. Photo reactions

- Photochemistry
- Photosensitization
- 14. Detection of Radicals
 - TBARS
 - Fluorescence
 - Cyt C /NBT
 - Strategies 1. SOD, CAT

15. EPR Detection of Radicals

- Direct Detection
- Spin Trapping
- Transition metal
- 16. Nitric Oxide/NOS
- 17. Oxygen radicals/ROS

POLITECNICO DI MILANO

Synthetic Applications: Addition to Multiple Bonds

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta"

Synthetic Applications of Radical Reactions

- T. Perchyonok, I. N. Lykakis, Al Postigo Streamlining *Free Radical Green Chemistry*, RCS, 2011.
- M. D. Forbes Ed. "Carbon-Centered Free Radicals and Radical Cations: Structure, Reactivity, and Dynamics", Wiley 2010.
- F. A. Carey, R. J. Sundberg "*Free-Radicals*" in Advanced Organic Chemistry, Springer Ed., pp 965-1071, 2008
- S. Z. Zard "Radical Reactions in Organic Synthesis", Oxford, 2004.
- Parsons, Blackwell "An Introduction to Free Radical Chemistry", Oxford, 2000.
- M.J. Perkins, "Radical Chemistry: The Fundamentals", OUP No. 91, 2000
- W.B. Motherwell and D. Crich "*Free Radical Chain reactions in Organic Synthesis*",, Academic Press, 1992.
- B. Giese, "*Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds*", Pergamon Press, Oxford, 1986.
- D.P. Curran, "The Design and Application of Free Radical Chain Reactions in Organic Synthesis", Synthesis, 1988, 417 and 489.

Radical Addition to Unsaturated Systems

Stereochemistry: A) Spatial relationship between substituents on R and X/Y in the bond

B) Spatial relationship between the formed bond and SOMO orbital.

Radical *cis-trans* Isomerization of Alkenes

- The final product sensitive to the presence of *cis* isomer (1% - pasty product)
- Lower temperature to reduce *cis* isomer (0.5% l₂, 80 °C, hv (visible, 100 watt), 1 h).
- in lab the *trans* is isolated by slow addition of hexane to the mixture
- The process was developed adding hexane at 50°C in several hours
- The process work at 2000 L scale but at 10.000 L: pasty crystals
- Solution: ppt. hexane at 55 °C (recycling the iodine from hexane).

T (°C)	R _{trans/cis}
30	13.6
80	11.9
120	10.8
180	8.9

Peculiarity of Carbon Centered Free Radical Addition to Olefins (C=C)

Substituent Effects:

R ₁ , R ₂ , R ₃	induce polar and conjugative effects : electron-donor groups - <u>nucleophilic radicals</u> electron-withdrawing groups - <u>electrophilic radicals</u> conjugated groups - <u>stabilized radicals</u>
	induce relevant steric effects when all R are bulky - <u>persistent radicals</u>
	induce significant conformational effects <i>R</i> = electronegative atoms - <u>non planar radicals</u>
Ζ	induces moderate polar and remarkable steric effects
Y,T	induce only important polar effects: <u>nucleophilic radicals</u> → electron-poor olefins <u>electrophilic radicals</u> → electron-rich olefins

Some More Considerations on Radical Addition to Olefins

- Frequently the process is reversible; the positional and substrate selectivity are controlled by the fate of adduct radicals (k_p)
- The regioselectivity is mainly determined by steric effects (addition to terminal C), in the absence of reversibility (high k_p).
- Sensitivity to substrate and radical conformation (stereoelectronic effects, electronegative atoms)
- The stabilization of adduct radical (CR₂-Y) is determinant only if Y is a strongly conjugating group (Ar, S, etc.)
- Generally the process is exothermic and fast (k_a > 10² M⁻¹·s⁻¹) and shows an early transition state (can be investigated using the Frontier Orbital Theory).

Inhibited Radical Additions and Radical Mono- and Poly-Additions

- Mono- or Direct Addition

Attilio Citterio

Monomer	<i>k_p</i> (M⁻¹⋅s⁻¹) (60°)	log A (M⁻¹⋅s⁻¹)	<i>E</i> att (kcal∙mole⁻¹)
Acrylamide	18.000 ^a	-	-
Vinyl Chloride	12.300	6.5	3.7
N,N-Dimethyl Acrylamide	11.000 ^ь	-	-
Vinyl Acetate	3.700	8.4	7.3
Methyl Acrylate	2.090	8.0	7.1
Acrylonitrile	1.960	-	-
Methyl Methacrylate	734	7.0	6.3
Styrene ^c	145	6.7	7.3
Butadiene	100	8.1	9.3
Isoprene	50	8.1	9.8

^a at 25°C. ^b at 50°C. ^c Also reported k (60°)= 176; logA = 7.0, e $E_{att} = 7.8$

$$\xrightarrow{\hspace{1cm}} H_2 C \xrightarrow{\hspace{1cm}} Y \xrightarrow{\hspace{1cm}} C \xrightarrow{\hspace{1cm}} C \xrightarrow{\hspace{1cm}} Y \xrightarrow{\hspace{1cm}} C \xrightarrow{\hspace{1cm}} Y \xrightarrow{\hspace{1cm}} Y \xrightarrow{\hspace{1cm}} V \xrightarrow{\hspace{1cm}} Y \xrightarrow{\hspace{1cm}} Y$$

	k	k	<i>k</i> /10 ³	k	<i>k</i> /10 ³	k	k
Χ, Υ	(CH ₃) ₃ C [•]	(CH ₃) ₂ C [•] OH	NCCH2 ⁻	(CH ₃) ₂ C [•] OH	(CH ₃) ₂ CCOOCH ₂	HOCH2	PhCH ₂ •
H, OEt	390	108	43	320	150	180	14
Me, OMe	220	82	35	1080	140	33	-
Me,OCOMe	1700	79	52	4850	88	680	-
H, Ph	13200	2410	380	2.2×10 ⁶	1900	2.3×10 ⁴	1300
CI, CI	35000	603	33	2.15×10⁵	270	5.3×10 ⁴	550
Н, СООМе	-	367	110	> 10 ⁷	490	7.1×10 ⁵	450
H, CN	2.4×10 ⁶	2020	110	> 10 ⁸	540	1.1×10 ⁶	2200
Н, СНО	-	1200	25	-	380	2.1×10 ⁶	-

H. Fisher, Landolt-Börnstein, New Ser. Vol. 18a-e (1995)

General Trends of Rates

- For nucleophilic 1°, 2° and 3° alkyl radicals k_a is proportional to EA
- For alkyl radicals substituted by electron-donor groups (very nucleophilic) k_a is roughly proportional to EA
- For alkyl radicals substituted by electron-withdrawing groups (electrophilic) k_a is proportional to IP
- Benzyl and allyl radicals (nucleophilic) react inefficiently owing to stabilization.

R-X can be quite structurally different (but needs a k_{tr} sufficiently high to sustain the chain!) and frequently is used as solvent.

Substituents in the Direct Addition

X = H R = Halo, SR, PR₂, P(OR)₂, SnR₃, SiR₃, GeR₃

 $\begin{cases} R = -C-Z \begin{cases} Y = NR_2, OR, SR, CN, COR, COXR, \\ (R = H, Alkyl, Acyl) (X = O, S, N) \\ Z, T = H, Alkyl, COOR' \\ R = -C(A) = B A = H, Alkyl, COR, OR, NR_2, SR; B = O, NR_2 \end{cases}$

Vogel, Synthesis, 1970, 99. Sosnovsky, "Free Radical Reactions in Preparative Organic Chemistry" (Mc Millan, N.Y.) 1964. Walling, 1957. Giese, B. 1986. Curran 1992. Crich 1992.

X = CI, Br, I R = H, Halogen, SR, SiR₃, NO, NO₂, SO₂R $R = -C(Halogen)_n H_{3-n}$, $-CR_2COOR$, R_f

C.Walling, E.S. Huyser, Org. React., 1963, 13, 91. P. Martin. Tetrahedron, 1985, 41, 4057 R.Kh. Friedlina, Synthesis, 1977, 145 e Russ. Chem. Rev. 1984, 53, 222. Curran, 1994

$X = BR_{2}$ R = Alkyl

H.C. Brown, J. Am. Chem. Soc., 1970, 92, 710 e 3503. Angew. Chem. I. E., 1972, 11, 693.

A) Polyhalomethanes

 $\begin{array}{rcl} \mathsf{RCH}=\mathsf{CH}_2 \ + \ {}^{\bullet}\mathsf{CCI}_3 \ \rightarrow \ \mathsf{R}\dot{\mathsf{C}}(\mathsf{H})\mathsf{-}\mathsf{CH}_2\mathsf{CCI}_3 \\ \mathbf{R}\dot{\mathsf{C}}(\mathsf{H})\mathsf{-}\mathsf{CH}_2\mathsf{CCI}_3 \ + \ \mathsf{CCI}_4 \ \rightarrow \ \mathsf{R}\mathsf{C}\mathsf{H}\mathsf{C}\mathsf{I}\mathsf{CH}_2\mathsf{CCI}_3 \ + \ {}^{\bullet}\mathsf{C}\mathsf{CI}_3 \\ \end{array}$ The transfer shows the order: $\mathsf{CX}_3\mathsf{-}\mathsf{X} > \mathsf{CHX}_2\mathsf{-}\mathsf{X} > \mathsf{CH}_2\mathsf{X}\mathsf{-}\mathsf{X} > \mathsf{CH}_3\mathsf{-}\mathsf{X} \\ (\mathsf{X} = \text{halogen atom}) \end{array}$

B) <u>N-Haloamines</u>

 $\begin{array}{rcl} \mathsf{R'CH}=\mathsf{CH}_2 \ + \ \mathsf{R}_2\mathsf{N}^\bullet \rightarrow \ \mathsf{R}_2\mathsf{N}\text{-}\mathsf{CH}_2\dot{\mathsf{C}}(\mathsf{H})\mathsf{R'} \\ \mathsf{RA}\text{-}\mathsf{CH}_2\dot{\mathsf{C}}(\mathsf{H})\mathsf{R'} \ + \ \mathsf{R}_2\mathsf{N}\text{-}\mathsf{CI} \ \rightarrow \ \mathsf{RA}\text{-}\mathsf{CH}_2\mathsf{CH}\mathsf{CI}\text{-}\mathsf{R'} \ + \ \mathsf{R}_2\mathsf{N}^\bullet \end{array}$

C) <u>Amines, Alcohols (X = O, NR")</u>

 $\begin{array}{rcl} \mathsf{R'CH}=\mathsf{CH}_2 + \mathsf{R}\dot{\mathsf{C}}(\mathsf{XH})\mathsf{H} \rightarrow \mathsf{R}\mathsf{CH}(\mathsf{XH})\mathsf{-}\mathsf{CH}_2\dot{\mathsf{C}}(\mathsf{H})\mathsf{R'} \\ \mathsf{R}\mathsf{CH}(\mathsf{XH})\mathsf{-}\mathsf{CH}_2\dot{\mathsf{C}}(\mathsf{H})\mathsf{R'} + \mathsf{R}\mathsf{CH}_2\mathsf{XH} \rightarrow \mathsf{R}\mathsf{CH}(\mathsf{XH})\mathsf{-}\mathsf{CH}_2\mathsf{CH}_2\mathsf{R'} + \mathsf{R}\dot{\mathsf{C}}(\mathsf{XH})\mathsf{H} \end{array}$

Simple Chain Radical Additions (Hydrogen Transfer)

D) <u>Esters</u> (X =COOR, Y = H, CI, COOR, CN, etc.)

 $\begin{array}{rcl} \mathsf{R}^{\prime}\mathsf{C}\mathsf{H}=\mathsf{C}\mathsf{H}_{2} + \mathsf{R}\dot{\mathsf{C}}(\mathsf{X})\mathsf{Y} \rightarrow \mathsf{R}\mathsf{C}\mathsf{X}\mathsf{Y}\text{-}\mathsf{C}\mathsf{H}_{2}\dot{\mathsf{C}}(\mathsf{H})\mathsf{R}^{\prime} \\ \mathsf{R}\mathsf{C}\mathsf{X}\mathsf{Y}\text{-}\mathsf{C}\mathsf{H}_{2}\dot{\mathsf{C}}(\mathsf{H})\mathsf{R}^{\prime} + \mathsf{R}\mathsf{C}\mathsf{H}\mathsf{X}\mathsf{Y} \rightarrow \mathsf{R}\mathsf{C}\mathsf{H}\mathsf{X}\mathsf{Y}\text{-}\mathsf{C}\mathsf{H}_{2}\mathsf{C}\mathsf{H}_{2}\mathsf{R}^{\prime} + \mathsf{R}\dot{\mathsf{C}}(\mathsf{X})\mathsf{Y} \end{array}$

E) Mercaptans and Hydroperoxides

 $RCH=CH_2 + RS^{\bullet} (ROO^{\bullet}) \rightarrow R\dot{C}(H)CH_2-SR(OOR)$

 $\dot{RC}(H)CH_2SR(OOR) + RSH(ROOH) \rightarrow RCH_2CH_2SR(OOR) + RS^{\bullet}(ROO^{\bullet})$

F) <u>Organometallic Hydrides (A = Alkyl-Hg, Sn, Ge, Si, etc.)</u>

 $R'CH=CH_{2} + RA^{\bullet} \rightarrow RA-CH_{2}\dot{C}(H)R'$ RA- $\dot{C}H_{2}C(H)R' + RA-H \rightarrow RA-CH_{2}CH_{2}R' + RA^{\bullet}$

B) Aldehydes (ketons)

 $RCH=CH_2 + RCO^{\bullet} \rightarrow RCO-CH_2\dot{C}(H)R$ $RCO-CH_2\dot{C}(H)R + RCHO \rightarrow RCOCH_2CH_2R + RCO^{\bullet}$

Continuous Synthesis of 2,5-Dimethylhexandiol

97% pur., 85% sel.

Peroxid-Chemie G.m.b.H., U.S. Patent US 5831134 (1998)

$$R - A - X + C = C \xrightarrow{In.} R - C - C + A$$

Attilio Citterio

Based on fragmentation of weak bonds *alfa* to the radical center of precursor RAX before addition.

R-Hg-H +
$$C=C' \rightarrow R-C'-C'-H + Hg$$

B. Giese, *Chem. Ber.* 1983, 116, 1240. *Angew. Chem. I.E.* 1981, 20, 965. *Tetrahedron*, 1985, 41, 4025.

Synthetic Strategy "1-<u>Addition/3-Fragmentation</u>"

Based on fragmentation of weak bonds C-A (allylic) in *beta* position to the radical center after the addition to the olefin.

 $R-CI + CH_2 = CH-CR_2 - SnR_3 \rightarrow R-CH_2 - CH = CR_2 + R_3SnCI$

G.E. Keck, Y. B. Yates *J. Am. Chem. Soc.* 1982, 106, 5829. *Tetrahedron*, 1985, 41, 4079; Baldwin, *J. Org. Chem.* 1985, 25, 3211.

Attilio Citterio

"1-Addition/1-Fragmentation"

$$R - X + c = c \xrightarrow{A} - c = c \xrightarrow{R} + A - X$$

A-X

 $k_{\rm tr}$

RX

R[•]

Based on fragmentation of weak bonds C-A in *beta* position to the radical center after addition to the olefin on carbon atom bearing the substituent A.

Baldwin, JCS Chem. Com. 1983, 133.

ka

C-Glycosides and Trans Metalation Reactions

POLITECNICO DI MILANO

Attilio Citterio

$$Ar \longrightarrow O \\ O \\ Bu^{t} + R \\ H \longrightarrow Ar \longrightarrow R + CO_{2} + {}^{t}BuOH$$

Radical Chain

^tBuO' + R-H → R' + ^tBuOH
R' + Ar-CH=CH-CO₃R' →
$$R-CH-\dot{C}H-Ar$$

 CO_2-OBu^t
→ R-CH=CH-Ar + CO₂ + ^tBuO'

Consecutive *beta* fragmentation of C-CO and O-O bonds.

Radical (R)	Yield %
Cyclooctyl	78
2,3-adamantyl	88
PhCH ₂	86
Dioxanyl	75
DMF	81
PhCO	45
2-THF	85
Polyethylene	75-85

A. Citterio et al. unpublished results

Example of Insertion in Cyclopropane Ring

K.S. Feldman, *J. Am. Chem. Soc.* 1986, 108, 1328. S.C. Shim, J. S. Song, *J. Org. Chem.* 1986, 108, 51 2817.

Attilio Citterio

Synthetic Strategy "Addition/Displacement"

$$R-X + \sum_{Z-Y} \longrightarrow R + Y + Z-X$$

Based on the displacement of weak bonds in appropriate positions to the radical center after the addition to the olefin.

 $R-CHI-CO_2-SnBu_3^n + R'-CH=CH_2$

In.

+ Buⁿ₃Snl

Attilio Citterio

Synthetic Strategy "Addition/Displacement"

Attilio Citterio

Based on "tandem" additions to unsaturated Z=Y systems at appropriate distance to the radical center of first addition.

R. Dowbenko, J. Am. Chem. Soc. 1964, 86, 946.

Synthetic Strategy "Assisted Addition"

$$R-X + R'-Y + C=C' \xrightarrow{In.} R-C'-C' + R'-X$$

$X = CI, Br, I, SePh, SR, NO_2$

H.G. Kuivila, *Synthesis*, 1970, 499; S.D. Burke, *J. Org. Chem.*, 1982, 47, 3348, N. Ono, *Tetrahedron*, 1985, 41, 4013.

Assisted Addition/Fragmentation

$$\begin{array}{c} & & \\ & &$$

Based on the easy addition of radicals on thiocarbonyl group (C=S) and to consecutive fragmentation of α -oxyaminoalkyl radical induced by <u>aromatization</u>.

D.H.R. Barton, *Heterocycles*, 1984, 21, 1; *Pure Appl. Chem.*, 1981, 53, 1081.
D. Colombani, *Prog. Polym. Sci.* 24 (1999) 425–480

Homolytic Cyclizations on Unsaturated Systems

100	1.8×10 ⁴	-
100	7×10 ⁻¹	-
98	2.3×10 ⁵	7×10 ³
85	1.1×10 ⁴	1.9×10 ³
. 100	3×10 ²	-
100	4.6×10 ⁴	-

Rate constants (65°C) for ring closure of ω-alkenyl radicals

H. Fisher, *Landölt-Börnstein, New Ser. Vol 13 a-e* (1983-1985); A.L.J. Beckwith, K.U. Ingold, *"Rearrangements in ground and exited states*", P. de Mayo Ed. Acad. Press. (1980).

Regioselectivity in the 1,n-Cyclization

Cyclization-Opening Rate of Relevant Radicals (at 25 °C)

Attilio Citterio

Cyclization-Opening Rate of Relevant Radicals (at 25°C)

Substituent Effects on Stereochemistry

2- and 4- substituted 5-Hexenyl radicals afford *trans*-cyclopentanes, whereas the 1- e 3-sostituted afford *cis*-cyclopentanes.

POLITECNICO DI MILANO

Attilio Citterio

Examples of Radical Cyclization

Stereo-chemical Control in Radical Cyclizations

G.Stork, P.M. Sher, H.-L.Chen, *J. Am. Chem. Soc.* 1986, 108, 6384; *Bull. Soc. Jpn.* 1988, 61, 149.

R = Me, X = H,OMe (60%) R = Me, X = O (20 %) R = THP, X = H,OMe (30%)

Cyclization with Functionality Retention

A) Reductive addition to acetyenic or allenic derivatives

G.Buchi, H.Wuest, *J.O.C.* 1979, 44, 546. D.J.Hart, J.K.Choi, *Tetrahedron*, 1985, 3959. **Mainly C-1,6 with bulky substituents**

B) Reductive addition of vinyl radicals

M.N. Marinovic, *Tetr. Lett.*, 1984, 1871; G. Stork, *J. A. C.* S.1982, 104, 2321

C) Reductive additions of haloalkyl radicals with rearrangement

Intramolecular Fragmentation/Addition

Fused ring rearrangements in the reduction of tertiary hydroperoxides.

A. Citterio, R. Santi* "Use of Homolytic Redox Processes in Organic Synthesis" NATO ASI Series, C 260 (F. Minisci Ed.), Kluver, 187 (1989)
Intramolecular Fragmentation/Addition

5R : 5S = 1:1 (65 %)

Selective beta-fragmentation, addition non stereo-selective

Stereo-selectivity in the Fragmentation of Tertiary and Allyl Hydroperoxides

First path preferred or exclusive with bulky R.

Tandem Radical Cyclisations

Curran, Adv. Free Rad. Chem. 1991, 1, 127

Citterio, *J. Org. Chem.* 57, 4250 (1992) Snider, B. B. *Chem. Rev.*, 96, 339 (1996)

Linear Triquinanes

Synthesis of Irsutene

Attilio Citterio

Curran, Adv. Free Rad. Chem. 1991, 1, 127

Tandem Cyclization Design

Angular Triquinanes

Synthesis of Silfiperfolene

Curran, Adv. Free Rad. Chem. 1991, 1, 127

Tandem Radical Cyclisations

Curran (1992)

Parsons, Synlett, 357 (1993)

Synthetic Design of Camptotechin

POLITECNICO DI MILANO

Attilio Citterio

Cyclization of Oxygen-and Nitrogen-Centered Radicals

Ph	<i>k</i> ₅ (s ⁻¹)	<i>k</i> ₆ (s ⁻¹)
	6.2×10 ⁶	6.7×10 ⁵
Ì	4.2×10 ⁷	2.9×10 ⁶
$\boldsymbol{\theta}_2$	7.6×10 ⁷	3.1×10 ⁶

R_3C^{\bullet}	$R_2 N^{\bullet}$	RÖ
$k_{\rm H} \sim 3 \times 10^{6}$	8×10 ⁴	2×10 ⁸ M ⁻¹ ⋅s ⁻¹

$$\overbrace{\mathbf{0}}_{\mathbf{k}_{c}} \xrightarrow{k_{c}} \overbrace{\mathbf{k}_{c} > 6 \times 10^{8} \text{ s}^{-1}} \overbrace{\mathbf{0}}_{\mathbf{k}_{c}}$$

Steric Effect on Radical Addition

Samarium Diiodide Promoted Cyclization

• Tandem Anion/Radical - Step 1: The Samarium Barbier reaction gives a ketone:

Molander, G. A.; Harris, C. R. J. Am. Chem. Soc. 1996, 118, 4059-4071.

Attilio Citterio

Samarium Diiodide Promoted Cyclization - 2

 Anion/Radical tandem- Step 2: The ketone gives a ketyl radical which cyclizes and is reduced.

Molander, G. A.; Harris, C. R. J. Am. Chem. Soc. 1996, 118, 4059-4071.

Attilio Citterio

Samarium Diiodide Promoted Cyclization - 3

Radical/Anion tandem: A ketyl radical cyclization followed by reduction to a reactive Sm-enolate.

Enholm, E. J.; Trivellas, A. Tetrahedron Lett. 1994, 35, 1627-1628.

Attilio Citterio

Manganese Radical/Cation Tandem

 Radical reactions of Manganese(III) Acetate terminate by conversion to a cation which can further react intramolecularly by electrophilic aromatic substitution:

Yang, D.; Ye, X.-Y.; Xu, M. J. Org. Chem. 2000, 65, 2208-2217.

Attilio Citterio

Tandem Radical Poly-Cyclisation

Pattenden, J. Chem. Soc., Perkin Trans. 1, 1999, 843.

Attilio Citterio

Early Efforts Toward Acyclic Stereochemical Control

• Amide groups were used to provide conformational control.

 C2-symmetric auxiliaries or dipole-dipole effects were used to fix the orientation of the auxiliary.

Attilio Citterio

Early Efforts Toward Auxiliary-Based Control

Curran, Rebek - auxiliary that can control β-stereoselectivity

The auxiliary was also effective for radical allylation reactions.

Curran, Rebek, JACS, 1992, 114, 7007.

POLITECNICO DI MILANO

Attilio Citterio

Lewis Acid-Enhanced Reactivity of Unsaturated Esters and Amides

Me

• Lewis acids increase yields of conjugate additions

Sato, F. J. Org. Chem., 1995, 60, 3576.

Asymmetric Radical Addition to α-Sulfinylcyclopentenones

POLITECNICO DI MILANO

Attilio Citterio

Lewis Acid Promoted Diastereoselective Radical Cyclization

• Coordination of Lewis acid controls s-cis/s-trans conformation of ester

Attilio Citterio

Enantioselective Lewis Acid Promoted Radical Cyclization

• First report of chiral Lewis Acid mediated radical cyclization

Reactions using the same Lewis Acid and the Weinreb amide provide the S-product in 26% ee.

Nishida, Chem. Commun., 1996, 579.

Attilio Citterio

Allylation of α-Sulfinyl Radicals

Solvent	Lewis Acid	trans:cis
propionitrile		77:23
propionitrile	LiClO ₄	90:10
CH ₂ Cl ₂		82:18
CH ₂ Cl ₂	MAD (1)	98:2
CH ₂ Cl ₂	MABR (1)	98:2
CH ₂ Cl ₂	MABR (0,1)	90:10

Selectivities were increased with the use of catalytic amounts of Lewis acid.

Renaud, *JACS*, 1991, 7803 Renaud, Curran, *JACS*, 1994, 3547

Attilio Citterio

Stereo-selective Reactions of 1,2-Dioxysubstituted Radicals

Attilio Citterio

Stereo-selective Addition to α-Methylenebutyrolactones

• Reactions in the absence of Lewis Acid are highly diastereoselective.

- π Radical is generated by addition of alkyl radical to α , β -unsaturated ester.
- Major product formed by H[•] delivery from face opposite phenyl group.
- Reversal of diastereoselectivity using bulky Lewis Acids

Sato, Chem. Commun., 1995, 1043

Chelation Controlled 1,3-Asymmetric Induction

Reduction Reactions

POLITECNICO DI MILANO

Attilio Citterio

Ways To Introduce Chirality

- ✓ Chiral Reagent
- ✓ Chiral Auxiliary
- ✓ Chiral Lewis Acid

N.B. Most radicals are extremely reactive intermediates and present early transition states in their reactions.

The First Example (Reductive Dehalogenation)

Chirality at Tin is transferred in reductive dehalogenation!

Schumann, H; Pachaly, B.; Schutze, B.C. J. of Organometallic Chemistry. 1984, 265, 145.

Dinaphthostannepins

Nanni, D; Curran, D.P. *Tetrahedron: Asymmetry* **1996**, *7*,2417. Blumenstein, M.; Schwalzkopf, K.; Metzger, J.O. *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 235.

R	Conditions	Yield (%)	ee (%)
Ме	20°C, 1h, 1.5 eq. Sn	98	6
Et	20°C, 3h, 1.5 eq. Sn	99	4
i-Pr	20°C, 3h, 1.5eq. Sn	99	1
t-Bu	20°C, 2h, 2.0eq. Sn	98	-6
t-Bu	20°C, 1h, 0.13eq. Sn	11	-23

Schwalzkopf, K; Blumenstein, M.; Hayen, A.; Metzger, J.O. Eur. J. Org. Chem. 1998, 177.

Attilio Citterio

L.A. Enhanced Enantioselectivity

Dakternieks, D.; Dunn, K.; Perchyonok, V.T.; Schiesser, C.H. Chem. Common. 1999, 1665.

Attilio Citterio

Steroidal Ligands

Schiesser, C.H.; Skidmore, M.A.; White, J.M. Aust. J. Chem. 2001, 54, 199.

Attilio Citterio

A Different Approach

- α -Halo-esters can be reduced with moderate to good ee's.
- Size is very important, large ligands on tin and large Lewis acids coordinating substrate lead to best ee's.
- Not practical for large scale due to toxicity of tin and use of stoichiometric amount of Lewis acid.

Murakata, M.; Tsutsui, H.; Takeuchi, N.; Hoshino, O. *Tetrahedron* **1999**, 10295., *J. Am. Chem. Soc.* **1997**, *119*, 11713.

Corey, E.J.; Pyne, S.G. Tet. Lett., 1983, 24, 2821.

Fallis, A.G.; Brinza, I.M. *Tetrahedron* **1997**, *53*, 17543.

Glyoxylate Imines

Radical Addition to Glyoxylate Imines

Bertrand, M.P.; Coantic, S.; Feray, L.; Nouguier, R.; Perfetti, P. Tetrahedron 2000, 56, 3951.

- MEt_x acts as initiator, chain transfer agent, and activating Lewis acid.
- No Sn is required, however a large excess of MEt_x and alkyl iodide (RI) is used in these reactions
- Autoxidation of organometallics provides the initiation step.

$$Et_xM + O_2 \rightarrow \bullet O-O-Met_{x-1} + Et \bullet$$

$$\mathsf{Et}\bullet + \mathsf{RI} \to \mathsf{Et}\bullet + \mathsf{R}\bullet$$

Glyoxylate Oximes to Chiral Amides

R	Lewis Acid	Solvent	Yield (%)	Selectivity
i-Pr	none	Et ₂ O	71	96:4
i-Pr	$BF_3^*OEt_2$	CH_2CI_2	80	96:4
Et	none	Et ₂ O	54	96:4
Et	$BF_3^*OEt_2$	CH_2CI_2	80	95:5
T-Bu	none	Et ₂ O	25	98:2
T-Bu	$BF_3^*OEt_2$	CH_2CI_2	83	98:2
C-Hexyl	none	Et ₂ O	74	96:4
C-Hexyl	BF ₃ *OEt ₂	CH_2CI_2	86	96:4

Miyabe, H.; Ushiro, C.; Naito, T. Chem. Commun. 1997, 1789.
A Possible Limitation?

R	R'	Lewis Acid	Yield (%)
CO ₂ Me	OBn	none	97
Et	OBn	none	n.r.
Et	OBn	BF ₃ *OEt ₂	95
CO ₂ Me	NPh ₂	none	41
Et	NPh_2	none	n.r.
Et	NPh ₂	BF ₃ *OEt ₂	n.r.

Miyabe, H.; Ushiro, C.; Shibata, R.; Sangawa, M.; Naito, T. Tetrahedron 1998, 54, 11431.

Attilio Citterio

Non-Glyoxylate Derived Hydrazones Chiral Auxiliary and Chiral Lewis Acids

Friestad, G.K.; Qin, J. *J. Am. Chem. Soc.* **2001**, *123*, 9922. Friestad, G.K.; Shen, Y.; Ruggles, E.L. *Angew. Chem. Int Ed.* **2003**, *42*, 5061.

Attilio Citterio

Non-Glyoxylate Derived Hydrazones Catalytic Chiral Lewis Acids

rieia%	ee
66	96
71	81
83	58
74	46
	66 71 83 74

Summary of C=N addition:

- Radicals add to C=N bonds faster than they do to C=C bonds.
- Intermolecular radical additions have been shown for imines, oximes, and hydrazones.
- Additions to hydrazones have been carried out enantioselectively with catalytic amounts of chiral Lewis acid.

Friestad, G.K.; Shen, Y.; Ruggles, E.L. Angew. Chem. Int. Ed. 2003, 42, 5061.

Radical Addition to Unactivated Alkenes Atom Transfer Reactions

Mero, C.L.; Porter, N.A. J. Am. Chem. Soc. 1999, 121, 5155.

D-Xylose as a Chiral Auxiliary

LA	Temp. (°C)	Yield(%)	dr
Eu(OTf) ₃	25	56	1.7:1
Yb(OTf) ₃	25	63	1.7:1
Eu(OTf) ₃	30	65	2.8:1
Yb(OTf) ₃	30	62	2.2:1
Eu(OTf) ₃	-78	71	12.5:1
Yb(OTf) ₃	-78	65	1:1

Enholm, E.J.; Bhardawaj, A. Tetrahedron Lett. 2003, 44, 3763.

n	R	R ₂	Mg(CIO ₄) ₂ eq.	Yield (%)	ee(%)
1	Ме	Ме	0.3	68	92
2	Me	Me	0.5	53	94
2	Н	Et	0.3	81 (1/1.4)	74/95
2	Et	Н	0.3	58 (1/1)	74/87

Yang, D.; Gu, S.; Yan, Y.; Zhu, N.; Cheung, K. J. Am. Chem. Soc. 2001, 123, 8612.

Attilio Citterio

Construction of Polycyclic Rings

LA	Additive	ee(%)	ee(%)
1	none	41	13
1	mol. sieve	24	33
2	none	60	66
2	mol. sieve	11	-56

Yang, D.; Gu, S.; Yan, Y.; Zhao, H.; Zhu, N. Angew. Chem. Int. Ed. 2002, 41, 3014.

Attilio Citterio

Radical Addition to Allylic Species

Curran, D.P.; Shen, W.; Zhang, J.; Heffner, T.A. J. Am. Chem. Soc. 1990, 112, 6738.

A Further Attempt

(R) Isomer shown approx. 25% overall yield

Stack, J.G.; Curran, D.P.; Geib, S.V.; Rebek Jr., J.; Ballester, P J. Am. Chem. Soc. 1992, 114, 7007.

Attilio Citterio

Allylation with Curran's Auxiliary

lonic and radical pathways give complementary selectivity.

Stack, J.G.; Curran, D.P.; Geib, S.V.; Rebek Jr., J.; Ballester, P J. Am. Chem. Soc. 1992, 114, 7007

Oxazolidinone Template in Allyl Transfer

Porter, N.A.; Wu, J.H.; Zhang, G.; Reed, A.D. J. Org. Chem. 1997, 62, 6702.

Fragmentation and Enantioselective Trapping

Table. Lewis Acid Promoted Reactions of Alkylsilanes and allylstannane^a

entry	R ₁	R ₂	R ₃	3 config	MX ₂	Z	Yield (%)	4 R: 4 S
1	Me	Me	Ph	(<i>R</i> , <i>R</i>)	Zn(OTf) ₂	Sn(Bu) ₃	84 ^b	29:71
2	Me	Me	Ph	(<i>R,R</i>)	Zn(OTf) ₂	Si(OEt) ₃	65 ^b	20:80
3	^t Bu	Me	Ph	(<i>R,R</i>)	Zn(OTf) ₂	Sn(Bu) ₃	63 ^b	87:13
4	⁺Bu	Me	Ph	(<i>R,R</i>)	Zn(OTf) ₂	Si(Me) ₃	88 ^c	95:5
5	^t Bu	Me	Ph	(<i>R,R</i>)	Mgl_2	Si(Me) ₃	86 ^b	16:84
6	^t Bu	Me	^t Bu	(S,S)	Mgl_2	Si(Me) ₃	61 ^c	89:11
7	^t Bu	-(CH ₂)-	^t Bu	(<i>S</i> , <i>S</i>)	Mgl_2	Si(Me) ₃	65 ^c	94:6
8	^t Bu	Me	^t Bu	(<i>S</i> , <i>S</i>)	Mgl_2	Si(Me) ₃	83 ^c	91:9

^a Reaction as described in eq 3. ^b Isolated yield. ^C Yield based on GC internal standard.

Porter, N. A. J. Org. Chem. 1997, 62, 6702.

Fragmentation and Enantioselective Trapping: Manipulation of the Template

Porter, N. A. et al Tetrahedron Lett. 1999, 40, 671

Explanation for the Reaction Selectivity

• Rate of rotation must increase with temperature faster than the rate of trapping with allyl stannane.

Attilio Citterio

• The relative rates of rotation vs. allyl trapping explain why slower reacting allyl reagents show higher selectivity.

Sibi, JACS, 2000, 122, 8873

Synthesis of Quaternary Centers

R	eq. LA	Additive	Yield (%)	ee(%)	Config.
Me	1.0	none	72	27	R
Me	1.0	Et ₂ O	84	81	R
Me	0.1	Et ₂ O	83	72	R
CH ₂ OMe	0.1	Et ₂ O	76	74	R
CH ₂ OEt	0.1	Et ₂ O	74	70	R
CH ₂ OBn	0.1	Et ₂ O	78	71	R

Murakata, M.; Jono, T.; Mizuno, Y.; Hoshino, O. J. Am. Chem. Soc. 1997, 119, 11713.

Attilio Citterio

Lewis Acid Promoted Atom-Transfer Radical Additions

- With Lewis Acid activation, alkenes are nucleophilic enough to react with the radical intermediate.
- Atom transfer products can be isolated if alkenes, rather than allyl-metal reagents, are used as nucleophiles

Lewis Acid _(1 equiv)	Conv. %
None	< 10
Mg(OTf) ₂	16
Sc(OTf) ₃	47
Yb(OTf) ₃	100

Secondary Bromides

Porter, JACS, 1999, 121, 5155

Free-Radical Polymerization of Acrylimides

Diastereoselective Copolymerization

- Degree of copolymerization depended on Lewis Acid. Sc(OTf)₃ in Et₂O gave best results (1:1).
- R = Bn provided > 95:5 diastereoselectivity.
- Enantioselective Copolymerization

- To get good copolymerization, 3.7 equiv. of Zn were required.
- Polymer was formed in approximately 60% ee.

Porter, JOC, 2000, 775.

Attilio Citterio

Radical Conjugate Addition

Porter, N.A.; Swann, E.; Nally, J.; McPhail, A.T. J. Am. Chem. Soc. 1990, 112, 6740.

Attilio Citterio

Hydroxyalkyl Radicals – Chiral Auxiliaries

Garner, P.P.; Cox, P.B.; Klippenstein, S.J. J. Am. Chem. Soc. 1995, 117, 4183.

Attilio Citterio

Hydroxyalkyl Radicals – Chiral Auxiliaries

Garner, P.; Anderson, J.T.; Cox, P.B.; Klippenstein, S.J.; Leslie, R.; Scardovi, N. J. Org. Chem. 2002, 67, 61 95.

Attilio Citterio

Chiral Michael Acceptors

Porter, N.A.; Scott, D.M.; Lacher, B. *J. Am. Chem. Soc.* 1989, *111*, 831 1. Curran, D.P.; Shen, W.; Zhang, J.; Heffner, T.A. *J. Am. Chem. Soc.* 1990, *112*, 6738.

Attilio Citterio

Curran's Auxiliary in Conjugate Addition

R	Temp.	Yield%	A:B	A dr
<i>t</i> -Bu	80	64	97:3	78:19
<i>п</i> -Ви	0	69	97:3	88:9
<i>i</i> -Bu	-20	68	>99:1	94:6
<i>i</i> -Pr	0	42	>99:1	82:18

Stack, J.G.; Curran, D.P.; Geib, S.V.; Rebek Jr., J.; Ballester, P J. Am. Chem. Soc. 1992, 114, 7007.

Attilio Citterio

Complex Controlled Diastereoselective Conjugate Additions

Conjugate Addition

Fragmentation

Attilio Citterio

Sibi, M. P. et al J. Am. Chem. Soc. 1999, 121, 7517; 2000, 122, 887.

Complex Controlled Diastereoselective Conjugate Additions

Attilio Citterio

Enantioselective Conjugate Addition

Wu, J.H.; Radinov, R.; Porter, N.A. J. Am. Chem. Soc. 1995, 117, 11029. Sibi, M. P. et al J. Am. Chem. Soc. 1996, 118, 9200; 2001, 123, 9472.

Table 1. Enantioselective Conjugate Radical Additions using Stoichiometric Chiral Lewis Acida

entry	substrate	product	$ligand^b$	Lewis acid ^e	yield (%) ^{d}	ee (%) ^e
1	5a	7a	SS-6a	Zn(OTf) ₂	61	37 (R)
2	5a	7 a	SS-6a	Mg(OTf) ₂	61	45 (R)
3	5a	7a	SS-6a	$MgBr_2$	92	77 (R)
4	5a	7 a	SS-6a	MgI_2	88	61 (R)
5	5a	7 a	SS-6b	MgI_2	88	82 (R)
6	5a	7a	SS-6c	MgI_2	88	47 (S)
7	5a	7a	RR-6c	$MgBr_2$	84	32 (R)
8	5a	7 a	SS-6c	$Zn(OTf)_2$	88	61 (S)
9	5b	7c	RR-6c	$Zn(OTf)_2$	66	72 (R)
10	5b	7b	RR-6c	$Zn(OTf)_2$	90	82 (R)
11	5b	7b	RR-6c	Mg(OTf) ₂	60	55 (R)
12	5b	7b	RR-6c	$Mg(ClO_4)_2$	71	64 (R)
13	5b	7b	SS-6a	$MgBr_2$	78	82 (R)
14	5b	7b	<i>SS</i> - 6b	MgI_2	88	74 (R)

^a For standard experimental conditions, see supporting information. ^b One equivalent of the ligand was used. ^c One equivalent of the Lewis acid was used. d Yields are for column or preparative TLC purified material. enantiomeric excess was determined by chiral HPLC analysis. The absolute stereochemistry of the product was determined by independent synthesis, X-ray analysis of a derivative, or hydrolysis (see supporting information for details).

Table 2. Enantioselective Radical Additions using Catalytic Chiral Lewis Acida

entry	substrate	product	Lewis acid/ligand	LA ^b (equiv)	yield (%) ^c	ee (%) ^d
1	5a	7a	MgI ₂ /6b	1.0	88	82
2	5a	7a	$MgI_2/6b$	0.5	86	79
3	5a	7a	$MgI_2/6b$	0.2	86	67
4	5a	7a	$MgI_2/6b$	0.05	57	40
5	5b	7b	$MgI_2/6b$	1.0	88	74
6	5b	7b	$MgI_2/6b$	0.2	73	66
7	5b	7b	Zn(OTf) ₂ /6c	1.0	90	82
8	5b	7b	Zn(OTf) ₂ /6c	0.2	71	70

^a For experimental conditions, see supporting information. ^b A 1:1 ratio of Lewis acid to ligand was used. ° Yields are for column or preparative TLC purified material. d Enantiomeric excess was determined by chiral HPLC analysis.

Enantioselective Conjugate Addition

Table 1. Enantioselective Radical Additions Using MgI₂ as Lewis Acid. Effect of Ligand Structure^a

	ligand			
entry	(stereochem)	yield ^b (%)	% ee (er) c,d	stereochemistry ^e
1	3a (<i>SS</i>)	88	47 (2.8:1)	S
2	3b (<i>SS</i>)	87	37 (2.1:1)	S
3	3c(4S,5R)	79	31 (2.0:1)	S
4	3d (4 <i>S</i> ,5 <i>R</i>)	88	36 (2.1:1)	S
5	3e(4S,5R)	88	89 (17:1)	R
6	3f $(4S,5R)$	88	93 (28:1)	R
7	3g(4S,5R)	90	82 (10:1)	R
8	3h (4 <i>S</i> ,5 <i>R</i>)	92	82 (10:1)	R
	$R_2 R_3$		R ₂	R ₃

3a $R_1 = H, R_2 = R_3 = CH_3$ **3b** $R_1 = H, R_2, R_3 = (CH_2CH_2)$ **3c** $R_1 = CH_3, R_2, R_3 = CH_3$ 3d $R_1 = CH_3, R_2, R_3 = (CH_2CH_2)$

3e $R_1 = R_2 = CH_3$ **3f** $R_1, R_2 = (CH_2CH_2)$ **3g** $R_1, R_2 = (CH_2CH_2CH_2)$ **3h** $R_1, R_2 = (CH_2CH_2CH_2)$

Attilio Citterio

Amino Acid Synthesis

RX	Yield%	ee	
MeOCH ₂ Br	71	65	
Etl	72	85	
C-Hexl	62	55	
i-Prl	62	83	
T-Bul	54	27	

Sibi, M.P.; Asano, Y.; Sausker, J.B. Angew. Chem. Int Ed. 2001, 40, 1293.

Attilio Citterio

Enantioselective Conjugate Addition : Application to Synthesis

entry	RM	temp ℃	solv.	time, h	yield, (%) ^b	ratio ^c 1:20
1		-78	THF	6	33	1:3
2	V	-78	Ether	5	26	1:7.8
3	MgBr	-78	Ether	3	21	1:6
4^{d}	$\left(\sum_{j=1}^{2n} \right)_2$	0	Ether	10	8	1:3
5	Ti(OiPr) ₃	-78	THF	4	28	1:1
6	Ti(OiPr) ₃	-78	Ether	4	85	5.7:1

^a For reaction conditions, see Supporting Information. ^b Isolated yield after column purification. ^c Determined by NMR. ^d Pseudo-ephedrine was used as a ligand.

Sibi, M. P. et al Org. Lett. 2004, 6, 1749.

Conjugate Addition of Prochiral Radicals

Alkene summary

- Chiral auxiliary and chiral Lewis acids have been used successfully in radical additions to alkenes.
- Oxazolidinones have proven to be the most versatile scaffold in these reactions.
- Aldol type products are accessible from appropriately substituted radicals or alkenes.

Sibi, M.P.; Rheault, T.R.; Chandrarnouli, S.V.; Jasperse, C.P. J. Am. Chem. Soc. 2002, 124, 2924.