

Free-Radicals: Chemistry and Biology

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta" http://iscamap.chem.polimi.it/citterio/education/free-radical-chemistry/

1. Introduction

- Current Status of Radicals Chemistry
- What is a Radical
- Free Radicals and Life
- 2. Historical Aspects
- 3. Electronic Structure and Bonding
- 4. Active Oxygen Specie,
 - O₂, O₂•⁻, HO₂•, ¹O₂, H₂O₂, HO•
 - Chemistry
 - H₂O₂ and peroxides

5. Radical Reactions

- Atom transfer
- Addition to multiple bonds
- Homolytic Aromatic Substitution
- Electron Transfer (oxidation-reduction)

6. Thermodynamics

7. Free Radical Kinetics

- First-order Reaction
- Second-order Reaction
- Steady-State
- Chain-reactions
- Redox chain reactions
- Inhibition

8. Radiation Chemistry

- Tools
- Specie: e⁻(aq), H[•], HO[•], H₂O₂, H₂, O₂^{•-}
- Pulse Radiolysis/Flash Photolysis

9. Lipid Peroxidation

- Chemistry
- Measurement
- Effects

10. Antioxidants

- Preventive
- Chain-breaking
- Small molecule (Vit. C/E, CoQ, Urate).
- Enzymes
- Chelates

11. Metals and Free Radical Chemistry

- Reactions
- Complexes and redox chemistry
- 12. DNA and Protein (As radical targets)

13. Photo reactions

- Photochemistry
- Photosensitization
- 14. Detection of Radicals
 - TBARS
 - Fluorescence
 - Cyt. C /NBT
 - Strategies 1. SOD, CAT

15. EPR Detection of Radicals

- Direct Detection
- Spin Trapping
- Transition metal
- 16. Nitric Oxide/NOS
- 17. Oxygen radicals/ROS

Free Radical Reactions

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta" Molecular transformation involving paramagnetic species.

Initiation	: generation of paramagnetic species from diamagnetic
Propagation	: migration of the radical center from an atom to another
Termination	: disappearance of paramagnetic species.
Radical chain	: regeneration of a paramagnetic specie from another involved in the propagation step.

Free Radical Non-Chain Reactions

A) Absence of chain (stoichiometric process in the radical source)

 $k_{\rm d} \sim 10^9 \,{\rm M}^{-1} \cdot {\rm s}^{-1}$ at 25°C (diffusion controlled in common solvents) v = 1 ${\rm M}^{-1} \cdot {\rm s}^{-1}$ at 25°C , [R[•]] = 10⁻⁵ M (steady state)

<u>Radical Inhibitor</u>(A): a compound able to prevent radical chain processes. The processes become stoichiometric in the radical source.

- a) Generates persistent radicals (R-R_n process)
- b) Generates stabilized radicals (R_n-R_n process)

Catalytic Sources : CHAIN PROCESSES

Stoichiometric Sources : INHIBITED PROCESSES

Characteristics of Radical Reactions

- Radical reactions occur readily in solid, liquid and gas phases
- Radical reactions generally are not influenced by solvent polarity
- Radical reactions generally are not influenced by acid or base catalysis
- Unlike cations or anions, radicals generally are scantly influenced by electron-donating or electron-withdrawing substituents
- Radical reactions are often preceded by an induction period during which time they are subject to inhibition
- Radical reactions are frequently chain processes
- Radical reactions are not frequently accompanied by skeletal rearrangements

Overall reaction

A Typical Radical Reaction Mechanism

Main Processes in the Propagation of Radical Reactions

1) Association Processes (bond formation) :

- Hydrogen abstraction
- Addition to unsaturated systems
 - Aliphatic systems Aromatic systems
- Displacement
- Ligand transfer

2) Electron Transfer Processes

- E.T. from metal ions and metals
- E.T. from organic substrates

3) Unimolecular Processes

Isomerization

Cyclization

Intramolecular atom abstraction

Decomposition (fragmentation)

- $R^{\bullet} + R'\text{-}X \rightarrow R'^{\bullet} + R\text{-}X$
- $\begin{array}{l} \texttt{R}^{\bullet} + \texttt{R}^{\bullet} \texttt{C} = \texttt{C} \rightarrow \texttt{R} \texttt{C}(\texttt{R}^{\bullet}) \texttt{C} \texttt{C}^{\bullet} \\ \texttt{R}^{\bullet} + \texttt{A} r \texttt{Y} \rightarrow \texttt{R} \texttt{A} r \texttt{Y}^{\bullet} \\ \texttt{R}^{\bullet} + \texttt{R}^{\bullet} \texttt{Y} \rightarrow \texttt{Y}^{\bullet} + \texttt{R} \texttt{R}^{\bullet} \\ \texttt{R}^{\bullet} + \texttt{ML}_{n} \rightarrow \texttt{R} \texttt{L} + \texttt{ML}_{n-1} \end{array}$

$$-Z=T----X^{\bullet} \rightarrow -Z-\dot{T}----X$$
$$Y-R-----X^{\bullet} \rightarrow \cdot R-----X-Y$$
$$R^{\bullet} \rightarrow A^{\bullet} + -Z=T-$$

Initiation

 $\ln \xrightarrow{k_1} 2 \ln^{\bullet} \qquad \ln^{\cdot} + Bu_3 SnH \rightarrow \ln H + Bu_3 Sn^{\bullet}$

Propagation

 $Bu_{3}Sn^{\bullet} + Br - (CH_{2})_{4}CH = CH_{2} \rightarrow Bu_{3}SnBr + {}^{\bullet}CH_{2}(CH_{2})_{3}CH = CH_{2} \quad k_{2} = 1.9 \times 10^{7} \text{ M}^{-1} \cdot \text{s}^{-1}$ ${}^{\bullet}CH_{2}(CH_{2})_{3}CH = CH_{2} + Bu_{3}SnH \rightarrow Bu_{3}Sn^{\bullet} + H - (CH_{2})_{4}CH = CH_{2} \qquad k_{3} = 10^{6} \text{ M}^{-1} \cdot \text{s}^{-1}$

$$\frac{k_{c} = 10^{5} \text{ s}^{-1}}{4}$$

$$\frac{k_{c} = 10^{6} \text{ M}^{-1} \text{ s}^{-1}}{4}$$

$$\frac{k_{5} = 10^{6} \text{ M}^{-1} \text{ s}^{-1}}{4}$$

$$\frac{k_{5} = 10^{6} \text{ M}^{-1} \text{ s}^{-1}}{4}$$

Termination

$$2 Bu_{3}Sn^{-} \rightarrow Bu_{3}Sn-SnBu_{3}$$

$$Bu_{3}Sn^{-} + R^{-} \rightarrow Bu_{3}Sn-R$$

$$R^{-} + R^{-} \rightarrow R-R$$

$$k_{t} = 2 \times 10^{9} M^{-1} \cdot s^{-1}$$

Rate = k_5 [Bu₃SnH] (k_4 [In] / k_t)^{1/2}

- 1) Proportional to $[In]^{\frac{1}{2}}$ (slightly sensitive to Initiator concentration)
- 2) The activation energy is related to the initiation reaction. ($E_{att} = 12-18 \text{ kcal-mol}^{-1}$, but for photochemical or radiolytic initiation $E_{att} = 0$)
- 3) If rate = 1 M/h, stationary $[R^{\bullet}] = 2.8 \times 10^{-10} \text{ M}$
- 4) Kinetic chain length = 900.000; Mean life time for a chain = 0.9 sec. (rate from [AIBN] = 3×10^{-4} M a 40° C).
 - The initiation must be continuous
 - All propagation steps must be fast (rate > 10²) (Importance of kinetic reference data)
- 5) Quite common competitions between different processes (*k* and [c] control)

Gas Phase Radical Halogenation of Alkanes

>

$$\begin{array}{c} \mathsf{CH}_{4} + \mathsf{Cl}_{2} \xrightarrow{h_{V}} \mathsf{CH}_{3}\mathsf{CI} + \mathsf{H}\mathsf{CI} \\ \xrightarrow{|\mathsf{Cl}_{2}|} \mathsf{CH}_{2}\mathsf{Cl}_{2} + \mathsf{H}\mathsf{CI} \\ \xrightarrow{|\mathsf{Cl}_{2}|} \mathsf{CH}\mathsf{Cl}_{3} + \mathsf{H}\mathsf{CI} \\ \xrightarrow{|\mathsf{Cl}_{2}|} \mathsf{CCI}_{4} + \mathsf{H}\mathsf{CI} \end{array}$$

$$\begin{array}{c} \mathsf{Step 1. initiation: } \overrightarrow{\mathsf{Cl}_{-}} \overrightarrow{\mathsf{Cl}_{-}} \xrightarrow{h_{V}} 2: \dddot{c}! \cdot \\ \mathsf{Step 2. propagation: } (a) : \dddot{c}! \cdot + \overrightarrow{\mathsf{H}_{-}} \mathsf{CH}_{3} \longrightarrow \mathsf{H_{-}}\mathsf{Cl} \cdot + \mathsf{CH}_{3} \\ (b) : \overleftarrow{\mathsf{CH}_{3}} + \overleftarrow{\mathsf{Cl}_{-}} \overrightarrow{\mathsf{Cl}_{-}} \xrightarrow{\mathsf{Cl}_{-}} \mathsf{Cl}\mathsf{CH}_{3} + : \dddot{c}! \cdot \\ \mathsf{c}! \cdot \\ \mathsf{c}! \cdot \xrightarrow{\mathsf{c}} \mathsf{Cl}_{3} + : \dddot{c}! \cdot \\ \mathsf{c}! \cdot \\ \mathsf{c}! \cdot \xrightarrow{\mathsf{c}} \mathsf{CH}_{3} \longrightarrow \mathsf{CH}_{3} - \mathsf{Cl}_{3} \end{array} \right\}$$

$$\begin{array}{c} \mathsf{Chain reaction} \\ \mathsf{c}: & \mathsf{Repeat } (a) \mathsf{ and } (b) \end{array}$$

$$\begin{array}{c} \mathsf{Step 3. Termination: } : \dddot{c}! \cdot & \overleftarrow{\mathsf{CH}_{3}} \longrightarrow \mathsf{CH}_{3} - \mathsf{Cl}_{3} \\ \mathsf{H}_{3} \overrightarrow{\mathsf{C}} \cdot & \overleftarrow{\mathsf{CH}_{3}} \longrightarrow \mathsf{H}_{3} \overrightarrow{\mathsf{C}} - \mathsf{CH}_{3} \end{array} \right\}$$

$$\begin{array}{c} \mathsf{Possible termination steps} \\ \mathsf{H}_{3} \overrightarrow{\mathsf{C}} \cdot & \overleftarrow{\mathsf{CH}_{3}} \longrightarrow \mathsf{H}_{3} \overrightarrow{\mathsf{C}} - \mathsf{CH}_{3} \end{array}$$

First propagation step

Second propagation step

 Increasing the concentration of methyl chloride, the reaction continues, until CCI₄ is formed **Selectivity in the H-abstraction**

Attilio Citterio

Relationship between Regio-Selectivity and Radical Stability

Reactivity			
Primary	С-Н ⊿Н°	= 420 kJ· mol ⁻¹	
Secondary	С-Н ⊿Н°	= 401 kJ· mol ⁻¹	
Tertiary	С-Н ⊿Н°	= 390 kJ· mol ⁻¹	

Attilio Citterio

Drawing the Reaction-Energy Diagram

$$CH_4 + CI_2 \rightarrow CH_3CI + CI$$

From BDEs:

 $\Delta H_{1}^{0} = +4.2 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H_{2}^{0} = -108.7 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H_{overall}^{0} = -104.5 \text{ kJ} \cdot \text{mol}^{-1}$

Experimental Values: (cannot predict)

 $E_{a1} = +16.7 \text{ kJ} \cdot \text{mol}^{-1}$ $E_{a2} = + 4.2 \text{ kJ} \cdot \text{mol}^{-1}$

From the diagram, we know:

- The overall reaction is exothermic by 104.5 kJ·mol⁻¹.
- The rate-determining step is step #1.

Reaction of Methane with Other Halogens

• The order of reactivity of methane substitution with halogens is:

fluorine > chlorine > bromine > iodine

- Fluorination is extremely exothermic therefore fluorination reactions are explosive
- Chlorination and bromination reactions less vigorous
- Iodinination does not occur
- The energy values of the initiation step are unimportant since they occur so rarely

FLUORINATION

	⊿ <i>H</i> ° (kJ⋅mol⁻¹)	<i>E_{act}</i> (kJ⋅mol ⁻¹)
Chain Initiation		
$F_2 \rightarrow 2 F^*$	+ 159	+ 159
Chain Propagation		
$F^{\bullet} + CH_4 \rightarrow HF + {}^{\bullet}CH_3$	- 130	+ 5.0
CH_3 + $F_2 \rightarrow CH_3F$ + F'	- 302	Small
Overa	ll ⊿H° = - 432	

Energetic in the Halogenation of Methane

	CHLORINATION				
	∆ <i>H</i> ° (kJ mol⁻¹)	<i>E</i> _{act} (kJ mol ⁻¹)			
Chain Initiation					
$Cl_2 \rightarrow 2 Cl$	+ 243	+ 243			
Chain Propagation					
$CI' + CH_4 \longrightarrow HCI + CI$	H ₃ · + 8	+16			
CH_3 + $CI_2 \rightarrow CH_3CI +$	Cl [.] _ 109	Small			
C)verall ∆ <i>H</i> ° = – 101		BROM	INATION	
				∆ <i>H</i> ° (kJ mol⁻¹)	E _{act} (kJ mo
		Chain Initiation			
		$Br_2 \rightarrow 2 Br^*$		+ 193	+ 193
		Chain Propagation			
		Br⁺ + CH₄ → HB	Br + CH ₃ .	+ 74	+78
		CH_3 + $Br_2 \rightarrow CI$	H₃Br + Br [•]	<u> </u>	Small
1			Overall	$\Delta H^{\circ} = -26$	
	$\wedge H^{\circ}$ (kJ mol ⁻¹)	<i>E</i> (kJ mol ⁻¹)			
Chain Initiation	,				
I₂ —2 I°	+ 151	+ 151			
- Chain Propagation					
$I' + CH_4 \rightarrow HI + CH_3'$	+ 142	+140			
$CH_3 + I_2 \rightarrow CH_3I + I'$	- 89	Small			
Ov	verall ∆ <i>H</i> ° = + 53				

Attilio Citterio

Role of the Radical Specie on Selectivity

With Br₂ the reaction is much more selective!

Attilio Citterio

Radical Halogenation with Br₂

• With bromine, the first step is much more endothermic; this has important consequences for the selectivity.

 $H_3C \cdot + H_3C \cdot \longrightarrow H_3C - CH_3$

Termination

BDE's (in kcal·mol ⁻¹)			Selectivity	² H _{rxn} (kcal⋅mol ⁻¹)
Primary C-H: 100.5				
Tertiary C-H: 95 .2				
CI-CI: 58.0	H ₂ C H	Cl _o /hy	Primary: 64%	- 28.9
H-CI: 103.2			Tertiary: 36%	-33.0
Primary C-CI: 84.2				
Tertiary C-CI: 83.0				
Br-Br 46 .0		Br ₂ /hv	Primary: 2%	-11.3
H-Br: 87.5			Tertiary: 98%	-15.6
Primary C-Br: 70.3				
Tertiary C-Br: 69.3				

Attilio Citterio

 In the case of Br₂, the transition state for the first step closely resembles the intermediate radical; therefore the stability of the radical plays a more prominent role in the outcome of the reaction

HBr Free Radical Addition to Olefins

 The anti-Markovnikov product is the result of a radical addition of HBr

$$X^{\bullet} + H_2C = CH_2 \rightarrow X - CH_2CH_2^{\bullet}$$

	Bond Strength	Bond Strength	ΔH
Χ	(π bond)	(X-C in X-CH ₂ CH ₂ ·)	(kJ⋅mol⁻¹)
CI	276	343	-67
Br	276	288	-12
I	276	226	+50

 $H-X + {}^{\bullet}CH_2-CH_2X \rightarrow X^{\bullet} + H-CH_2-CH_2-X$

	Bond Strength	Bond Strength	ΔH
Χ	(H-X)	(H-C in H-CH ₂ CH ₂ -X)	(kJ⋅mol⁻¹)
CI	431	410	+21
Br	364	410	-46
	297	410	-113

Radical Addition to Alkynes

 Radical addition of HBr to alkynes also gives the anti-Markovnikov product

Double Addition Reaction to Alkynes

 Repetition of this reaction on several olefins gives always the vicinal dibromide, whereas the ionic reaction gives a geminal dibromide.

Allylic Halogenation

 The allylic position is easily brominated via a radical reaction through a resonant allyl radical.

Allylic Bromination

NBS = N-bromosuccinimide

While NBS is
photochemically
cleaved to
generate the first
bromine radical, it
also reacts with
HBr to form Br₂
which is needed to
propagate the
chain reaction.

BDE in C-H bonds of Cyclohexene

The Stability of the Allyl Radical

When an allylic hydrogen is abstracted to form an allyl radical, the developing p orbital on the sp² carbon overlaps with the p orbitals of the alkene

- The new *p* orbital is conjugated with the double bond π orbitals
- The radical electron and the π electrons of the alkene are delocalized over the entire conjugated system
- Delocalization of charge and electron density leads to increased stability

The three *p* orbitals of the allylic system combine to form three molecular orbitals

- The bonding molecular orbital contains two spin-paired electrons and this orbital increases bonding between the carbons
- The nonbonding orbital contains a lone electron which is located at carbons 1 and 3 only

Attilio Citterio

Importance of Kinetic Parameters in Radical Reactions (Reversibility and Selectivity)

Allylic Bromination

Allylic bromination occurs also at low temp. If an effective system of generation di of Bromine atoms, which prevent accumulation of Br₂ or HBr in the reaction medium.

(es. N-bromoamide)

Allylic chlorination occurs only at high temp. owing to the less favorable dissociation equilibrium of β -chloroalkyl radical to Chlorine radical.

Two products are formed in the bromination of unsymmetrical alkenes, i.e. 1-octene, but, because the intermediate allylic radical is not symmetrical and the reaction at the two ends is not equally likely, the substitution at the less hindered, primary end is favored.

 These are the most important types of reactions that radicals can undergo.

Complex Hydrogen Transfer Reactions in Biological Systems

Numbering refers to phage T4 NrdD.

Attilio Citterio

A) <u>THERMAL</u> (breaking of weak bonds) $R-R \xrightarrow{\Delta} 2 R^{-1}$ (i.e. ^tBuO-OBu^t \rightarrow 2 ^tBuO⁻)

B) <u>PHOTOCHEMICAL/RADIOLYTIC</u> (radiation/matter interaction) $R-X \xrightarrow{h\nu} [R-X]^* \rightarrow R^* + X^* \qquad R-X \xrightarrow{\gamma ray} R^* + X^*$ (i.e. $CH_3-I \xrightarrow{h\nu} [CH_3-I]^* \rightarrow CH_3^* + I^*$)

C) <u>REDOX</u> (redox couples with mono-electron transfer)

Red. + X-Y(ox) \rightarrow Ox. + X⁻ + Y⁻

Ox. + X-H(red) \rightarrow Red. + X⁻ + H⁺

(i.e. $Fe^{2+} + {}^{t}BuO-OH \rightarrow FeOH^{2+} + {}^{t}BuO^{-}$ Mn(OAc)₃ + CH₂(CO₂Et)₂ \rightarrow Mn(OAc)₂ + CH(CO₂Et)₂ + AcOH)

Generation of Free Radicals: Examples of Thermolysis and Photolysis Sources

Radical Generation - Weak Bonds: Peroxides

High temperature initiators:

Hydroperoxides T _d = 155-175°C

Dialkyl Peroxides 100-135°C

110-130°C

Moderate temperature initiators:

Low temperature initiators, 35-60 °C

Peroxycarbonates

3-bond cleavage process?

Di-t-butyl peroxalate, DBPOX

β-cleavage to carbon centered radical

POLITECNICO DI MILANO

Attilio Citterio

Di-tert-butylperoxalate as Free-Radical Source

Rate Coefficient of Dissociation (k_{d})

• Values at 298 K taken from relative trapping experiments

$$k_d = 2.9_1 \times 10^{15} \ s^{-1} \left(\frac{-115_9 \ kJ \cdot mol^{-1}}{R \ T} \right)$$

- T = 298 K
- styrene
- two nitroxides
- follow nitroxide consumption

Thermolysis of Tert-Butil Perbenzoate

The rate constant for the thermolysis of *tert*-butyl perbenzoate (R = Ph) is about 10⁻⁹ s⁻¹ at 60°C. This is about 50 times faster than the rate constant for the decomposition of di-*tert*-butyl peroxide and about 50 times slower than the rate constant for dibenzoyl peroxide.

(Rüchardt, C. Fortschr. Chem. Forsch. 1966, 6, 251).

 It seems that the decomposition is a one-bond cleavage. This is based on scrambling of the label in ¹⁸O labeled perester.

 $^{t}Bu - O - OOC - Ph \rightarrow ^{t}Bu - O \bullet + PhCOO \bullet$

 $PhCOO \rightarrow Ph + CO_2$

(Koenig, T., Deinzer, M., Hoobler, J. A. J. Am. Chem. Soc. 1971, 93,

938)

• The decomposition of *tert*-butyl peracetate is more complicated.

(Goldstein, M. J. Judson, H. A. J. Amer. Chem. Soc. 1970, 92, 5413.)

Structure/reactivity Relationships in Radical Forming Reactions

$$\begin{array}{c} \mathbf{O} & \Delta \\ \mathbf{R} - \mathbf{C} - \mathbf{O} - \mathbf{O} - \mathbf{t} \mathbf{B} \mathbf{u} \end{array} \xrightarrow{\Delta}$$

R	t _{1/2}	$\Delta \mathbf{H}^{*}$ kcal·mol ⁻¹	∆S* e.u.
CH ₃	500,000	38	17
PhCH ₂	1700	28.7	3,9
t-Bu	300	30.6	13.0
PhCH=CHCH ₂	100	23.5	-5.9
Ph ₂ CH	26	24.3	-1.0
Ph(CH ₃) ₂ C	12	26.0	5.8
Ph ₂ (CH ₃) C	6	24.7	3.3

- Start from compounds that readily loose a stable compound such as nitrogen gas (so called azo-compounds)
- A widely used radical initiator is AIBN (azobisisobutyronitrile) ...

Attilio Citterio

1,1'-azobis(1-cyclohexanenitrile)

4,4'-azobis(4-cyanovaleric acid)

Efficiency of Thermal Radical Initiation

Bond Dissociation Energy of typical initiators

Compound	∆ H_d (kJ⋅mol⁻¹)
НО-ОН	213
H ₂ N-NH ₂	242
HO-CI	251
MeN=N-Me	192
ONO-Me	234
MeHg-Me	217
Cl ₃ C-Br	205
(PhC(CH ₃) ₂ -) ₂	259

- Bonds between electronegative atoms
- Bonds in organometallics
- Sterically hindered bonds

Half life for decomposition of typical thermal initiators (approximate values owing to the dependence from solvent)

Half-Life of Some Commercial Peroxides (Storage and Handling)

Generation of Free Radicals: Redox Reactions

0-5 °C in water

0-5 °C in organic/aqueous phase

Attilio Citterio

cumyl hydroperoxide

C-M bonds have low BDE, and are easily homolyzed into radicals;

Trialkylboranes:

 $R_3B + O_2 \rightarrow R_2BOO' + R'$

Metal carbonyls:

 $Mn_2(CO)_{10} \rightarrow 2 (CO)_5 Mn^{-1}$

Organo-lead:

FORMATION OF GRIGNARD REAGENTS:

SET (Single Electron Transfer) Reactions

Initiation using a metal in ammonia

 $ArX + e(NH_3) \longrightarrow (ArX)$

Generation of Radicals by Electron Transfer Processes

i) Reduction via carbonyl anion radicals, i.e. Ester Reduction by Na in Ethanol

Kolbe Reaction - Electrochemical oxidation

Functionalization of Polymer Surfaces by Plasma Sources

 $e^- + O_2 \rightarrow O + O + e^-$

• Functionalization occurs by the chemical interaction of plasma produced species - ions, radicals and photons with the surface.

Ο

- Chemical groups are incorporated onto the surface which change surface properties.
- Process usually only treats the top monolayers not affecting the bulk.

Wettability on PE film with 3 zones of treatment: a) untreated b) slightly treated c) strongly treated.

Gas Phase Chemistry: He/O₂/H₂O

• Treatment in O₂ containing plasmas is known to effectively incorporate O atoms into the surface.

 Process is initiated by electron impact dissociation of O₂ and H₂O into radicals such as O and OH.