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Modern EPR Spectrometer

Microwave source

and detector
PC 

(user interface)

Sample probehead

(cavity)

Electromagnet
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electronics

Solids

Liquids

Gases

High S/N
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Block Diagram of ESR Spectrometer

Klystron Attenuator

Load
Diode 

detector

Circulator

Cavity

Magnet

m-Ammeter

http://www.chm.bris.ac.uk/emr/Phil/Phil_1/p_1.html
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Application Techniques of Electron Spin 

Resonance

Methods

 Direct ESR

 Spin-Trapping

Techniques

 Freeze Quench

 Snap Freeze

 Flat Cells

 AquaX

 Steady-State

 Fast-Flow

 Stopped-Flow

 Rapid Sampling

 Folch Extraction

 Bile Cannulation

 Other Techniques

Applications

 In Vivo

 In Vitro

 In Situ
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Molecular Oxygen Provides Contrast to 

Paramagnetic Probes in EPRI

• Molecular oxygen is paramagnetic and provides contrast to paramagnetic 

probes.

• This causes spectral broadening (increase in line width)

• Line width changes from oxygen contrast > 200 % in EPR, In NMR such 

changes may be ~10%

Oxygen (pO2)
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It is possible to image spatial distribution of paramagnetic spin probe by EPR 

and obtain pO2 information
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Direct ESR

“Freeze” the reaction

1) freeze quench (in vitro)

2) snap freeze (in vitro, ex vivo)

Steady-State

1) Rapid sampling (in vitro )

2) Fast-flow (in vitro)

The electron paramagnetic resonance 

spectrum of 17O in O2
ˉ generated during 

steady-state oxidation of xanthine catalyzed 

by xanthine oxidase. Both the 11-line 

spectrum from 17O17Oˉ and the six-line 

spectrum from 17O16Oˉ were detected. The 

results provide final confirmation that one-

electron reduction of oxygen can occur in 

biological systems.

Bray, R.C., Pick, F.M. and Samuel, D., Eur J. Biochem, 15 352-355, 1970
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Whole Animal Studies by ESR



Attilio Citterio

AscH- Recycles Tocopherol
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Electron Paramagnetic Resonance

Electron Spin Resonance

A spectroscopic technique to detect all paramagnetic species:

 Persistent paramagnetic species

 Transient paramagnetic species

•OH

Free Radicals

Ascorbate

Hydroxyl

etc.

Transition Metals

All that have

unpaired electrons

Spin Labels

R1 & R2 chosen to 

provide specificity

Spin Traps
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Alignment of Spin Moments in the Presence 

of a Magnetic Field.

In absence of an external 

magnetic field the electron’s 

magnetic moment will orient 

randomly.

When a larger external 

magnetic field is applied, the  

electrons will align either with 

or against this field.

B0
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Spin ½ Electron in an External Field:

Zeeman Effect 

Electron Spins Precess at the Larmor Frequency about the 

External Field ge = 1.76e7 rad/sec/G
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Temperature Effect: Galvinoxyl
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EPR Spectrum

The EPR signal is processed

and output as a 1st derivative

of the absorption spectrum. 
Note that the width between points of 

maximum slope (ΔHMSα) is easily 

measured and is the standard 

representation of band width.

EPR absorption occurs when 

the irradiation frequency 

“matches” the energy level 

separation created by the 

magnetic field.

Energy

Magnetic field strength (B0)

EPR Intensity

(arb. units)

Field strength (Gauss)
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Typically, n0 = ca. 9.2 × 109 Hz (9.2 GHz)

(i.e. l0 = ca. 3 cm, which is X-band microwave radiation)

If g = 2, then B0 will be ca.  0.33 T (3300 G)

First-derivate

presentation
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Magnetic Field Effect

Divergence of the ±1/2 

levels of an electron in 

a radical as the 

external magnetic field 

(B) is increased.

hn hn hn

ms = + 1/2

ms = - 1/2
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N-1/2 = ca. 5.004 × 1013 (300 K)

(if 1014 radicals in the sample)

N-1/2/ N+1/2 = e(hn /kT) = 1.0015 (300 K)

= 1.0044 (100 K)

0
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EPR Hyperfine Coupling

Effect of hyperfine 

coupling to a 

single nucleus with 

I = ½ in the high-

field region.
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Hyperfine Splitting 

No hyperfine interaction Simple hyperfine interaction

Multiple hyperfine interactions

N

N

CH3

CH3

N

N

CH3

CH3

+
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Number of Lines and Magnetic Moment of 

Nuclei 

# of lines = 2n(I + ½), so I = ½ gives 2 lines, I = 1 gives 3 lines, etc.

Hyperfine splittings are additive
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The g-Factor

EPR:  g-factor

h = Planck’s constant

n = Microwave frequency

b = Bohr magneton

B0 = Magnetic field

Microwave Band Microwave 
Frequency (GHz) 

B0 (for g=2) 
Gauss 

L 1.1 392 

S 3.0 1070 

X 9.5 3389 

K 24.0 8560 

Q 35.0 12485 

W 94.0 33600 
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g-factor

g = gspin only + dg = 2.0023 + dg

1. The MAGNITUDE of dg depends  on the size of (z/D); the major variation ia in z

2. The SIGN of dg depends on the detailed electronic configuration and orbital energies of the 

radical. For most types of organic radicals dg is positive, although it can be negative especially 

for certain s radicals e.g. acyl radicals. 

Simplified view: orbital magnetism restored by the unpaired electron moving via:

(a) Originally filled orbitals,  dg + ve      (b) Originally empty orbitals,  dg-ve

Atom C N O F Cl Br

Z 6 7 8 9 17 35

(z/cm-1) 29 76 151 270 586 2460

s RADICAL p RADICAL

SOMO (USUALLY) HAS SIGNIFICANT 

s-A.O. CARACTER

SOMO HAS (ESSENTIALLY) NO 

s-A.O. CARACTER

p SOMO: has node 

in molecular plane
p* orbitalp orbital

SOMO in 

molecular plane

Me

O C
H

H

H

C

Me

Me

N
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ΔE = gβH  g-factor ranges for several classes of 

free radicals*

class Range of typical g

Chlorophyll and related porphyrin cations and 

anions; polycyclic hydrocarbon cations / anions
2.0024 ~ 2.0028 b

Flavosemiquinones 2.0030 ~ 2.0040

Benzosemiquinones, aryloxy, and phenoxy 

radical ions
2.0040 ~ 2.0050

Nitroxides 2.0050 ~ 2.0060

Peroxyl radicals 2.01 ~ 2.02

Sulfur-containing radicals 2.02 ~ 2.06

a Data from Bolton [8]
b Values as low as 2.000 (zinc tetraphenylporphyrin anion, ZnTPP-) and as 

high as 2.004 (ZnTTP+ Br -) are known, however.
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Direct EPR of a Tyrosyl Radical

Gunther, M.R., Sturgeon, B.E., and Mason, R.P., Free Radic. Biol. Med. 2000, 28, 709-719, 
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g-Factor in Metalloproteins

Field intensity (Gauss)

g~6
g~3.5

g~1.4-2.5

Cytochrome oxidase is a metalloprotein with more than one metal 

center. The g-values are used to identify and characterize the different 

centers.
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Saturation of EPR Signal

In EPR under saturation

Optimal 

Boltzmann 

distribution

Boltzmann 

distribution 
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“saturating” 

conditions
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Approximate Energy Levels for a 
14N Nitroxide Spin Label; S =½, I=1

In general, EPR gives

information on the #

and nuclear spin state

of nearby nuclei –

coordination sphere of

metal centers in 

in metalloproteins

DE1 DE2 DE3
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Energy level Diagram for a 15N Nitroxide

S=½; I=½

(a) 

Zero 

field

(b) 

Electron 

Zeeman

(c) 
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Zeeman+ + +
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Nitroxide Reference Frame

Hres = [hn/begeff(q,f)] + miAeff(q,f)

geff = gxxsin2qcos2f  gyysin2qsin2f + gzzcos2q

Aeff = [Axx
2sin2qcos2f + Ayy

2sin2qsin2f + Azz
2cos2q] ½

gxx = 2.0086

gyy = 2.0056

gzz = 2.0022

Axx = 7 G

Ayy = 6 G

Azz = 34 G
14N−O X

Z

Y

Ho
θ

ϕ
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Biological Relevant Simple Radicals

FLAVINIC COENZIMES

SUPEROXIDE ANION
Stop-flow, rapid-freeze,77°K

MONODEHYDROASCORBATE
Redox equilibrium, continuous-flow
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Kinetic Determinations

OH-oxidation of glycine anions

Scheme from

Bonifacic, Stefanic, Hug, 

Armstrong, Asmus

J. Am. Chem. Soc. 1998, 

120, 9930-9940
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Summary of Features Underlying ESR of 

Free Radicals (1)

1. An electron is a spinning unit of negative charge with a magnetic 

dipole.

2. Electrons paired in atomic or molecular orbitals have their intrinsic 

magnetism canceled out; hence, most organic molecules are 

diamagnetic.

3. Free radicals are paramagnetic because they have a net unpaired 

electronic magnetic moment.

4. An external magnetic field aligns free or unpaired electrons into one 

of two quantized states with respect to the orientation of the electronic 

magnetic moment to the field– parallel (a slightly lower energy state) 

and antiparallel.

5. A resonant high-frequency electromagnetic field (usually in the 

microwave range) excites spin flips between the two states.
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Summary of Features Underlying ESR of 

Free Radicals (2)

6. Net energy is absorbed from the radiating field because initially there 
are more electrons in the parallel-aligned state.

7. The essential statement of the ESR resonance condition: Resonating 
(microwave) field frequency ÷ applied magnetic field strength  = g ×
(physical constants)

8. Major components of an ESR spectrometer: (1) scanning 
electromagnet, (2) microwave source and conductors, (3) sample 
cavity, and (4) sensitive detection and signal amplification.

9. Usual ESR spectra are the first derivatives of microwave power 
absorbed plotted vs. applied magnetic field strength.

10.Electron spin resonance spectral lines have shape, width, intensity 
and position (g-value)

11.Hyperfine spectral line splitting from the interaction of unpaired 
electrons with magnetic nuclei can determine the structure or 
positions of free radical components and is a powerful aid in free 
radical identification
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C. Spin Trapping and Spin Labeling

Prof. Attilio Citterio

Dipartimento CMIC “Giulio Natta”



Attilio Citterio

Spin Trapping Technique

A diamagnetic spin trap (ESR silent) compound reacts with reactive 

short-lived free radicals to form a more persistent nitroxide or spin 

adduct. From the ESR spectrum of the spin adduct, the structure of the 

reactive free radical can be deduced indirectly.
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Properties of a “Good” Spin Trap

1. Stable (2 classes: nitroso R-N=O, and nitrones R-CH=N(O)R’) 

2. Easy to purify 

3. Spin adduct is relatively stable

4. Different spin adducts have distinctly different ESR spectra

5. not toxic

Most commonly cyclic nitrone used: 

5,5-Dimethyl-1-pyrroline N-oxide (DMPO)
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A Selection of the Spin-Traps that have 

been Used in Biological System

Name Abbreviation Structure

tert-Nirosobutane

(nitroso-tert-butane)

tNB (NtB)

α-Phenyl-tert-butylnitrone PBN

5,5-Dimethylpyrroline-N-oxide DMPO

tert-Butylnitrosobenzene BNB

α-(4-Pyridyl-1-oxide)-N-tert-

butylnitrone

4-POBN

3,5-Dibromo-4-nitroso-

benzenesulphonic acid

DBNBS
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DMPO Spin-trapping

• Impure liquid

• Needs additional purification by vacuum distillation or  

charcoal treatment

• Superoxide adduct is unstable

Advantages:
• Large data base

Disadvantages:

DMPO superoxide adduct

Spontaneous  decay

DMPO hydroxyl adduct
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Detection of O2
•‾ with EPR spectroscopy

CP

+ 3.2103 M-1s-1

+

+ 35 M-1s-1

N

CO2H

O
CP-H

O2


_ + H2O2

1 e
_

O2


_
O2

3.  Spin probes (cyclic hydroxylamines)

2.  Spin trapping (DMPO, EMPO, DEPMPO)

DMPO

DMPO/OOH

O2


_

N

CO2H

OH

N+

O
-

1.  Direct detection

H2O2

SOD

N

O

OOH
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Relative Half-Lives of Superoxide Adducts

t1/2 (min) t1/2 (min)

1

8

14

13

3

?

FEBS Letters. 473(1):58-62, Free Rad. Biol.Med.. 28(3):403-408
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Spin-trapping of Superoxide with BMPO Trap

BMPO-OOH adduct spectrum 

10 G

aN

aH

aH

b

BMPO-OH adduct spectrum 

10  G

aN

aH
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EPR Spectra from DMPO Adducts
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EPR spectra from 4-POBN adducts
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Reactions of the Spin-Trap DMPO with 

Superoxide, Hydroxyl and Ethanol Radicals

O2
• - radical

DMPO-OOH

DMPO-OH
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Nitroso Spin Traps

• Free radical adds to the nitrogen atom of a C-nitroso compound

• 2-methyl-2-nitrosopropane, MNP

• 3,5-dibromo-4-nitrosobenzene sulfonate, DBNBS
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EPR Spectra from Methyl Radical Adducts 

of Nitroso Traps

3,5-dibromo-4-nitrosobenzene 

sulfonate Methyl adduct

2-methyl-2-nitrosopropane 

Methyl adduct
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DMPO-trapping the Tyrosyl Radical

• Oxidize tyrosine with HRP/H2O2

Gunther, M.R., et al., Biochem. J. 1998, 330, 1293-1299.
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Why not Spin Trap?

 Nitrone spin traps, especially DMPO

 Adducts can interconvert, i.e., DMPO/.OOH decays to form DMPO/.OH

 Subject to rare nucleophilic addition across their double bonds

 Yields an EPR silent hydroxylamine which can be facilely oxidized up to 

the nitroxide

 Nitroso spin traps MNP and DBNBS

 Often acutely toxic so can’t use in vivo

 The C-nitroso group critical to their function is highly reactive

 Tend to directly add across unsaturated systems giving EPR-silent 

hydroxylamines that are readily oxidized to the corresponding nitroxides
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Superoxide Spin Trapping: Kinetic Analysis

Nitrone + O2
•– [Nitroxide-OOH] Other

BIOLOGICAL PROCESS

(E)

k1 k2 k3

Under steady-state concentrations of superoxide and saturating concentrations of 

the nitrone, then

kd

P

2

2 2 3

( )
( )( ) [ ( ) ( ) ]d

d Nitroxide OOH
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Spin-labeling Technique

• Method using stable free radicals (NITROXIDES) to covalently mark 

diamagnetic biomolecules. The spin label work essentially as a probe 

of the surrounding.

• The efficiency of this function depend on the intrinsic properties of the 

nitroxide radical (Anisotropy of g and A, molecular geometry, Polarity)

• Owing to these features, EPR spectra of nitroxide are sensitive to 

structural peculiarity and to interactions of marked biomolecules in 

supra-molecular complexes. The spectral band changes allow to 

identify and measure these characteristics.

• The main limitations are related to the molecular weight ratio 

biomolecule/nitroxide: the system perturbation decrease with the 

increase of the molecular weight.
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Typical Nitroxide Radical Precursors for 

Spin Labeling

Ossazolidinil-N-oxil

DOXIL

(16-, 5-) 12-DSSA

16-DSPC

Pirolidinil-N-oxil

Pirrolinil-

PROXIL

Tetrametilpiperidinil-N-oxil

TEMPO
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Stability of Nitroxide Radical

RIDUCTANTS:

Ascorbic Acid; Ditionite; Ti(III)/H+; phenylhydrazine; thiols.

Stable to: LiAlH4 ; RCOCl; SOCl2

O2

Over OXIDATION 

(CrO3, Ag2O)

L.J. Berliner,  Spin Labeling, Academic Press]

oxoammonium salt,
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Main Structural Features

IN = 1; MI = -1, 0, +1

g^  ½(gxx + gyy)

A^  ½(Axx + Ayy)

3440342034003380336033403320

^

0

-0.004

-0.002

0.002

0.004

0.006
g//  gzz

A//  Azz

||

3280 3300 3320 3340 3360 3380 3400 3420

0

-0.002

-0.001

0.001

0.002

0.003
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Sensitivity of Nitroxide to Biomolecule 

Mobility through g and A Anisotropy .

• Free molecular motion allows a time averaging of main diagonal 

elements of g and A tensors :

 g = 1/3(gxx+gyy+gzz)

 A = 1/3(Axx+Ayy+Azz)

the resulting EPR spectrum shows three equal bands:

• Motion restriction prevent the time averaging  and allows the simultaneous 

visibility of perpendicular and parallel spectra superimposed with the central 

bands coincident and external bands different:

• lo resulting spectra show 5 bands:

Molecular motion modulate the anisotropy and the nitroxide EPR spectra will 

change depending on the dynamic state of the labeled biomolecule.
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Mobility Parameters

[Debye]

Axial symmetry; isotropic motion

dynamic Parameter
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Two-Site Exchange Model

Effects of Motion on EPR Spectra

na nb(a) (b)

(c) (d)

nex

nex<< (na–nb)

nex ~ Dn nex > Dn
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Variation in the EPR Spectrum for a Single 

Nitroxide

Single Crystal - x

Single Crystal - y

Single Crystal - z

Polycrystalline

Crystal 

Dissolved

in Water
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EPR Spectra as a Function of Rotational

Correlation Time; tr = 1/6Dr

Nitroxide in H2O

Small Protein - EGF

Large Protein – 1 MDa

r = 4prh
3/ 3kT
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Molecular Order

• When the motion is reduced (in the EPR time scale: c << 1/n) in a 

bilayer rigid(5-DSPC, S 1) and oriented (planar membranes on a 

solid support, SPB), the nitroxide is able to see the geometric order of 

acylic chains of components phospholipids.

• Under molecular order conditions, the perpendicular and parallel 

spectrum are well different: an angular dependence (anisotropy) of 

EPR spectra are observed.

• However, la coexistence of ^ and || spectra reveals the different 

orientation coexistence in phospholipidic bilayer, therefore disorder.

• The loss of perpendicular orientation of alkyl chains induces a loss of  

angular dependence with appearance of bands of || spectrum in the ^ 

spectrum, and vice versa, until the total disappearance of an angular 

dependence of the EPR spectra.
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Geometry of Phospholipid Spin Labels and 

EPR Spectral Anisotropy
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Anisotropy Loss = Disorder
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SPB:  order/disorder

^
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Polarity and Hyperfine Coupling Constant

• One of the limit formula describing the electronic structure of nitroxide

shows charge separation:

• This formula is stabilized in polar media and can be recognized in 

EPR spectra by an A value higher than in apolar media owing the 

higher electronic charge density on nitrogen atom:

• Polarity measurement can be so carried out.
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EPR of Transition Metal Proteins

• Can be used to monitor metalloproteins which are paramagnetic 

– both Fe and Cu containing and not limited heme proteins 

• Can distinguish between specific oxidation and ligation states 

and detect free radicals present on metalloproteins (spin traps)

ferrous (Fe2+),

ferryl (Fe4+),

cuprous (Cu+)

ferrous-nitrosyl (Fe2+)-NO,

ferryl-associated radicals

ferric (Fe3+),

cupric (Cu2+)

EPR Silent Paramagnetic

Distinct EPR spectra
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Reaction of NO with MbO2 and Hb
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Iron-sulfur Proteins: Escherichia coli 

NADH:Ubiquinone Oxidoreductase 

The soluble NADH dehydrogenase fragment represents the electron input part of the 

complex and consists of the subunits NuoE, F, and G. The FMN and four iron-sulfur 

clusters have been detected in this fragment by means of EPR spectroscopy.
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Copper Proteins

LACCASES (Fungal and Bacterial Protein)

77°K

STELLACIANINA

The binding of small exogenous ligands to mutants of 

the blue copper protein stellacyanin from 

Pseudomonas aeruginosa, altered in the axial position, 

Met121X (X ) Gly, Ala, Val, Leu, or Asp), has been 

studied with optical and electron paramagnetic 

resonance (EPR) spectroscopy. The results show that 

small molecules can enter the pocket left by the side 

chain of Met121.

77°K

CERULOPLASMINE
Main Copper-protein of human sera; 

redox factor of non ferrous substrates.



Attilio Citterio

Example: Identification of Redox and 

Ligation States 

Spencer et al, (2000) JBC 275, 36562

100 G

Hb2+NO

Hb3+

Hb3+ + H2O2

Non-heme
Fe3+

Free radical
(globin)

Peroxyl 
radical

Svistunenko etal (1996) FRR 24, 269



Attilio Citterio

Determining Mechanisms using Combination of 

UV/Vis, EPR and Polarographic Methods
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O2 consumption parallels 

peroxyl radical formation

When O2 consumption 

ceases, peroxyl radical 

begins to decay and metHb

concentrations start  

increasing

Hb3+ + H2O2


