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RADICAL AND OXIDANT DETECTION IN 

BIOLOGY  

DIRECT

 EPR-electron paramagnetic resonance

INDIRECT (UP TO THE 90’s)

 Use of scavengers (DMSO, dimethylurea, etc.)

 Use of antioxidant enzymes (mimetics and inhibitors)

 Quantification of end products of lipid peroxidation (TBA, 
chemiluminescence, etc.)

 Spin trapping

INDIRECT (MORE RECENTLY)

 Knock-outs/super-expression of antioxidant enzymes and/or 
radical/oxidant producer enzymes

 Characterization/quantification of radical products from biotargets 
(lipids, proteins, DNA) (stable isotope-dilution LC/ESI/MS/MS-
immunodetection)

 Spin trapping (LC/MS-immunodetection)

 Use of fluorescent/chemiluminescent probes
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Several Complementary Techniques

Direct:

 Electron Spin Resonance 

(ESR) 

 Chemically Induced 

Dynamic Nuclear 

Polarization (CIDNP)

 Positron

Non direct:

 Fluorescence

 Chemiluminescence Fluorescence

RNS

ROS
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Biomarkers of Oxidative Stress

 CCl4-induced oxidant stress 

in rats. 

 Markers quantified and 

compared to hepatic 

histology/enzyme leak:

 Plasma and urine IsoPs

 Plasma antioxidants

 Plasma GSH and GSSG

 Protein carbonyls and 

specific amino acid 

oxidation products

 8-hydroxy-

deoxyguanosine
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Advantages of Isoprostane Quantification to 

Assess Oxidant Stress

 Isoprostanes are stable molecules.

 The assay is highly precise and accurate.

 IsoPs can be detected in all fluids and tissues.

 Normal ranges can be defined.

 Allows for studies to evaluate the effects of interventions on 
endogenous lipid peroxidation.

 Disadvantages of IsoPs quantification

 Samples must either be analyzed immediately or stored at –70o C.

 Increases in IsoPs locally in tissues or fluids aren’t detected by 
measuring systemic oxidant stress.

 F2-IsoPs represents only one of a myriad of arachidonate 
oxygenation products.

 Analysis is labor intensive and requires expensive equipment.
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Thiobarbituric Acid-Reactive Substances 

(TBARS)/MDA

• Most commonly used method to assess lipid peroxidation.

 Measures malondialdehyde (MDA) which is a breakdown product 

of lipid peroxidation.

• Method:

 Sample to be tested is heated with thiobarbituric acid at low pH and a pink 

chromogen (believed to be a TBA-MDA adduct) is formed.

 Quantification-absorbance at 532 nm or fluorescence at 553 nm.

• Quantification of TBARS is an accurate measure of peroxidation in 

oxidizing systems in vitro.

• TBARS quantification in body fluids is inaccurate.

 Substances other than MDA form chromogens at 532 nm.

 MDA is formed during the assay procedure.

 Antioxidants can interfere with the assay.

 MDA can be derived from the diet.
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Thiobarbituric acid reactive substances 

assay (TBARS)

Nonselective detection of reactive oxygen species oxidizing species.

Junqueira VB; Mol Aspects Med. 2004 Feb-Apr;25(1-2):5-16.  

Hader D; Photochem Photobiol Sci. 2002 Oct;1(10):729-36.

HO•, FeIV=O

Malonaldehyde bis(dimethyl acetal) 

Deoxyribose 

TBA

532 nm
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TBARS Results

30 minutes of reaction time with 0.10 g 40-70 mesh Fe(0), under aerobic 

conditions.

Absorbance Units at 

534 nm

0 mM deoxyribose, 2.39 mM EDTA 0.0

3.18 mM deoxyribose, 0 mM EDTA, - also 

N2 flow, - No Fe(0)
0.149

3.18 mM deoxyribose, 2.39 mM EDTA 0.846

Ind. & Eng. Chem. Res.  2003,  42(21),  5024-5030.
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ROS Attack to Lipids

–CH=CH–C•H–CH=CH–

–C•H–CH=CH–CH=CH–

–CH=CH–CH=CH–C•H–
R•Bisallylic hydrogen atoms

(Linoleoyl residues) Conjugated dienes

[206 nm] [235 nm]

[270 nm]

+
[TBARS assay]

PC

R•

Oxidized PC

R =   CH3 CH2OH          HC=O    HO-C=O

n               n+1              n+1 n+1

MDA
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TBARS/MDA

• HPLC Assays can measure TBARs.

• MDA, HNE, and other aldehydes can be quantified by HPLC or 
GC/MS.

• These assays are generally more specific than TBARs although not 
necessarily more accurate as an index of lipid peroxidation.

• Levels of TBARS vary widely.

 Plasma levels

• Regular assay 4-35 mM.

• HPLC-coupled 0-0.18 mM.

• TBARS increased in various disorders.

 Hypercholesterolemia (Chirico et al., Free Rad. Res. Comm. 
19:51, 1993).

• Controls 0.10 + 0.08 mM

• Hypercholesterolemics 0.61 + 0.25 mM
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Probes for Oxidation States by Fluorescence

• DCFH-DA (H2O2) 488 525

• HE (O2
-) 488 590

• DHR 123 (H2O2) 488 525

Probe Oxidant Excitation        Emission

DCFH-DA: - dichlorofluorescin diacetate

HE: - hydroethidine

DHR-123: - dihydrorhodamine 123
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Representative Leuco(‘white’) Dyes

(dihydro) fluoresceins

e.g. DCFH2  DCF

reduced   oxidized 
used in over 1000 

studies

(dihydro)rhodamines 

e.g. DHR-123   R-123 

reduced   oxidized 

(dihydro)ethidium

e.g. DHE       E(Br) 

reduced   oxidized
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DCFH2 as Fluorescent Detector of 

Hydroperoxide

• Measurement of hydroperoxides in biological samples (an alternative 

to the TBA test and iodide assay)

DCFH2 + HRP (or hematin)

2,7-dichlorodihydrofluorescein

(DCFH2) non fluorescent Keston and Brandt, 1965

Cathcart, Schwiers and Ames, 1984

oxidation

CATALYST

HRP or haematin

DCF
fluorescent
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DCFH2 oxidation to DCF involves two 

single-electron oxidation steps

-2e

See Rota et all, 1999 

DCF

DCFH•

DCFH2
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Interaction of Peroxidases with H2O2

Resting enzyme

Compound I

H2O2

H2O
+2e─

Compound II

AH2
•AH + H+

1e─

AH2

•AH + OH─

1e─
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DHR for the detection of ROS in cellular 

systems

DHR

Dihydrorhodamine 123

(taken up directly by cells)

Rhodamine

Rh

-2e

DHR was shown to be three times more sensitive than 

DCFH2 in the detection of oxidants produced during 

the respiratory burst of neutrophils (Rothe et al.,1988)
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DHR for the detection of ROS in cellular 

systems (2)

-2e

See Rothe et al.,1988

DCF

DCFH2

DCFH•
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Fluorescent  Microscope

Dichroic Filter

Objective

Arc Lamp

Emission Filter

Excitation Diaphragm

Ocular

Excitation Filter

EPI-Illumination
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JABLONSKI DIAGRAM and Fluorescence
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Applications of Fluorescence

• enzyme assays

• nucleic acids 
• measurement

• detection (gels)

• microscopy

• flow cytometry

substrate  product*

Detection Limits for Nucleic Acids

• UV absorbance 1 mg/ml

• ethidium bromide 10 ng/ml

Excitation

monochromator
Sample

holder

Emitted

light

Emission 

monochromator

Detector

Light

source
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Parameters used in Fluorescence

• Extinction Coefficient

 refers to a single wavelength (usually the 

absorption maximum) 

• Quantum Yield

Qf is a measure of the integrated photon emission 

over the fluorophore spectral band

• At sub-saturation excitation rates, fluorescence 

intensity is proportional to the product of  and Qf
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Oxidation of DCFH by H2O2 and Iron Ions
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Non-specific 

• radical 

intermediate may 

react with cellular 

components 

• oxidized 

(fluorescent) 

product can be re-

reduced and 

generate O2
•–

• probe can be 

photo-oxidized to 

give radicals 

(Marchesiet

al.1999)

 H2O2 unreactive unless catalysed (haem, peroxidases, cyt. c)

Rothe et al.,1988
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Detection of Superoxide by Fluorescence

(dihydro)ethidium (DHE reduced) → Ethidium Bromide (E+Br‾ oxidized)

O2
•‾

Example: Neutrophil oxidative Burst 

Phagocytic 

vacuole
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Fluorescence  Spectra of HE/X/XO-DNA   

and E+-DNA
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Other Probes of Interest:

Green Fluorescent Protein (GFP) 

 GFP is from the chemiluminescent jellyfish Aequorea

victoria

 excitation maxima at 395 and 470 nm (quantum efficiency 

is 0.8); peak emission at 509 nm

 contains a p-hydroxybenzylidene-imidazolone

chromophore generated by oxidation of the Ser-Tyr-Gly at 

positions 65-67 of the primary sequence

 Major application is as a reporter gene for assay of 

promoter activity

 requires no added substrates.
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Problems with Probes for Oxidative Stress

• Lack of specificity 

 NO2
• and CO3

•– radicals are both one-electron oxidants with 

broadly similar reactivity towards e.g. phenols 


•OH will form same products as NO2

• and CO3
•– radicals but 

also additional species 

• Interference: generation of species being measured via   probe 

chemistry, and sensitivity to environment 

 lucigenin ‘redox cycles’ to generate superoxide 

 photoreduction of probe 

 oxygen, thiols and other cellular constituents may modify 

signal

• Requirements for catalyst: signal may reflect levels of catalyst 

rather than of oxidants 

 particular problem with commonest probe 
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Nitro Blue Tetrazolium (NBT)

One of the oldest and most established methods to detect intracellular 

superoxide (Reduction of NBT to formazan, a dark blue precipitate, 

(absorbance at 560 nm))

MTT assay used to determine cytotoxicity

Mitochondrial 

reductases

3‐(4,5‐Dimethylthiazol‐2‐yl)‐
2,5‐diphenyl‐tetrazolium bromide

Purple formazan 

TTC assay to indicate cellular respiration

2,3,5-Triphenyl 

tetrazolium chloride

1,3,5‐triphenyl‐

formazan

Dehydrogenases
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Nitro Blue Tetrazolium

 NBT detects intracellular superoxide; O2
•‾ >> H2O2

 NBT is susceptible to reduction by several tissue reductases. 

 NBT has been shown to artificially generate superoxide by 

auto‐oxidation. 

 The specificity for superoxide should be confirmed by inhibition 

of NBT staining by polyethylene‐glycolated (PEG)‐SOD. 

 Detection of superoxide in biological samples should not rely 

exclusively on NBT reduction. 

Huige Li Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727.
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Cytochrome C Reduction –

e‾

e‾

e‾

ferricytochrome c

ferrocytochrome c

Oxidants

(H2O2)

(Absorb at 559 nm)
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Cytochrome C Reduction – The Assay

Acetylated ferricytochrome c 

+ Tissue 

+ catalase

Acetylated ferricytochrome c

+ Tissue 

+ catalase

+ SOD

37°C 30 min in 96‐well plate

Remove tissue

Absorbance at 540, 550, and 560 nm
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Cytochrome C Reduction – The Assay

Acetylated ferricytochrome c 

+ Tissue 

+ catalase

Acetylated ferricytochrome c

+ Tissue 

+ catalase

+ SOD

37°C 30 min in 96‐well plate

Remove tissue

Absorbance at 540, 550, and 560 nm

Without SOD With SOD

Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. 

 .

2 1 1

OD without SOD - OD with SOD
O

21.1 mmol L cm
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 

 
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Cytochrome C Reduction Assay

Strengths

 the “gold standard” (by some researchers) for superoxide 

detection with phagocytes, isolated enzymes like xanthine 

oxidase.

 It allows quantification of superoxide without addition of a 

standard, because the extinction coefficient of reduced 

cytochrome c is known.

Weaknesses

 Low sensitivity: for vascular tissues one is working at the lower 

limit of the rang of superoxide detection.

 Identical tissues in samples ± SOD.

 Cytochrome c reduction only detects extracellular superoxide
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Suggested References on Immuno-spin 

Trapping of Protein Radicals
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Peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as 
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anion-mediated oxidations. Free Radic. Biol. Med. 2005, 38: 201-214.

 Ramirez, D.C. & Mason, R.P. 2005. Immuno-spin trapping: Detection of protein-

centered radicals. In: Current Protocols in Toxicology, Suppl. 24, 17.7.1-

17.7.18, John Wiley & Sons, Inc.  

 Ramirez, D.C, Gomez Mejiba, S.E. & Mason, R.P. 2005. Copper-catalyzed 
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27402-27411. 

 Deterding, L.J., Ramirez, D.C., Dubin, J.R., Mason, R.P. & Tomer, K.B. 2004. 
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Chemiluminescence‐based Assays

On exposure to superoxide, chemiluminescent probes release a photon, 

which in turn can be detected by a scintillation counter or a luminometer.

Because most of these compounds are cell permeable, the superoxide

measured reflects extracellular as well as intracellular O2
•‾ production

 Lucigenin: bis-N-methylacridinium nitrate

 Cypridina luciferin analogues, such as

 Coelenterazine: 2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl) 8-benzyl-

3,7- dihydroimidazol[1,2-α]pyrazin-3-one

 CLA: 2-methyl-6-phenyl-3,7-dihydroimidazo dihydroimidazo (1,2-α)-

pyrazin pyrazin-3-one

 MCLA : 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo(1,2-

α)pyrazin-3-one

 Luminol: 5-amino-2,3-dihydroxy-1,4-phthalayineidone

 L-012: 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-

(2H,3H) dione
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Lucigenin Chemiluminescence

O2
•‾   +   LC2+ →   LC·+ +   O2

•

(lucigenin) (lcation radical)

O2
•‾   +   LC·+ →   LCO2

(dioxetane)

LCO2 →  2N-methylacrydone + hn

Strengths

• Specific for superoxide ‐ no need to prepare a second sample with SOD to 

prove that the signal is derived from superoxide.

• Intracellular/extracellular superoxide, because lucigenin penetrates cells

Weaknesses

• Redox cycling (by flavin containing enzymes to regenerate superoxide)

• Low sensitivity: Lucigenin signal is usually only slightly above background 

normal chemiluminescence plate readers or luminometers typically used for 

luciferase assay are not sensitive enough to detect the low counts yielded 

by superoxide reaction with 5 µM lucigenin. 
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Lucigenin Chemiluminescence
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Cypridina Luciferin Analogs

Coelenterazine: 2‐(4‐hydroxybenzyl)‐6‐(4‐hydroxyphenyl)-8‐benzyl‐3,7‐dihydro-

imidazol-[1,2‐α]pyrazin‐3‐one

Coelenterazine is the molecule responsible for the fluorescence of 

various bioluminescent marine organisms in the genus cypridina and is 

the light‐emitting component of the fluorescent protein aeqourin.

Coelenterazine does not undergo redox cycling and was found to be 

useful as a probe for the detection of superoxide.

Cypridina luciferin analog (CLA): 2‐methyl‐6‐phenyl‐3,7‐dihydroimidazo-(1,2‐α)‐

pyrazin‐3‐one

Methylated‐modified CLA (MCLA): 2‐methyl‐6‐(p‐methoxyphenyl)‐3,7‐dihydro-

imidazo(1,2‐α)pyrazin‐3‐one



Attilio Citterio

Luminol & L‐012

Luminol (5‐amino‐2,3‐dihydro‐1,4‐phthalazinedione) is one 

of the oldest chemiluminescent probes used to detect 

ROS.

Luminol is oxidized by a variety of ROS, including O2
•‾, 

H2O2, HO•, and ONOO‾.

L‐012: 
8‐amino‐5‐chloro‐7‐phenylpyrido[3,4‐d]pyridazine‐1,4‐(2H,

3H) dione

 a modified form of luminol

 detects O2
•‾, ONOO‾, and probably other ROS.

Luminol and L‐012 don’t undergo redox cycling.
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L‐012

Daiber A, et al. and Munzel T. Free Radic Biol Med. 2004; 36:101-111.
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L‐012; CL

Daiber A, et al. and Munzel T. Free Radic Biol Med. 2004; 36:101-111.
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L‐012

Comparison of sensitivity of chemiluminescence probes to superoxide anion

Nishinaka Y et al. (BBRC. 1993; 193: 554-559)

Conc.

(µM)

Integral

fMLP

(counts)'

Chemiluminescence

Background

(counts)

Sensitivity

(SIN)

L-012 200 177560 40 4439

500 309454 48 6447

800 336970 146 2308

Luminol 625 7229 8 904

1250 8085 8 1011

2500 9160 12 763

MCLA 0.1 10410 780 13

1 77950 3800 21

10 340270 16840 20

IFN-y-treated EoL-1 cells were stimulated with 10-7 M fMLP, and CE response was measured for 2 min with a Luminescence Reader.

Eol-1: human eosinophilic leukemia cell line MLP: N-Formylmethionyl-leucyl-phenylalanine


