

School of Industrial and Information Engineering Course 096125 (095857) Introduction to Green and Sustainable Chemistry

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta" https://iscamapweb.chem.polimi.it/citterio/it/education/course-topics/

The Carbon Cycle.

Attilio Citterio

Carbon Cycle and Industry.

In photosynthesis, energy from sunlight drives the carbon fixation pathway. ~ 2×10¹¹ tons of carbon each year is involved in the process, with an equivalent energy content of 70 billion tons of oil, about 10 times the present world's energy demand.

Global CO₂ Emissions.

Atmospheric carbon dioxide concentrations (from 1750 to 2000ac)

Source: C.D. Keeling and T.P. Whorf, Atmospheric CO_2 Concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii, Scripps Institute of Oceanography, 1998. A. Neftel et al, Historical CO_2 Record from the Siple Station Ice Core, Physics Institute, University of Bern, Switzerland, 1994.

Attilio Citterio

Transport CO₂ Emissions by Country 1990-2030.

Source: Stern Review Report (2006)

Transport CO₂ Emissions by Mode and CO₂ Specific Emissions (in g of CO₂ per unit of thermal energy).

(*) wood is neutral when used in sustainable way (reforestation)

Source: Stern Review Report (2006)

$[gCO_2 \text{ per } kWh_{th}]$

"All plant and animal matter is 'Biomass'. Materials Produced by Living Organisms are Renewable Resources Used Goal-Oriented for Purposes Outside Food and Feed Production"

- Solar energy is stored in the chemical bonds of the biomass and this energy can be extracted, if burnt efficiently.
- Biomass resources include: dedicated energy crops (i.e. SRC willow/poplar; *miscanthus*); industrial crops; agricultural crop residues; forestry residues; animal waste; municipal wastes...
- Used either as a liquid or solid form of energy.

Thinning Residues Wood chips Wood waste

- pallets
- crate discards
- wood yard trimmings

Corn Stover Rice hulls Sugarcane • bagasse Animal biosolids (CAFO)

Hybrid poplar switch grass Willow Rapeseed Algae Municipal waste organic fraction

Fuel Composition and Characteristics of Oven-dry Biomass.

Biomass	Volatile (%)	Fixed C (%)	Ash (%)	Carbon (%)	Hydrogen (%)	HHV MJ⋅kg⁻¹	LHV MJ⋅kg ⁻¹	Ash def. T (°C)	Ash fusion T (°C)
Arhar stalk	83.47	14.76	1.77	46.75	6.55	15.00	14.85	1250-1300	1460-1500
Bagasse	75.10	16.87	8.03	45.71	5.89	19.50	19.37	1300-1350	1420-1450
Bamboo dust	75.32	15.59	9.09	43.86	6.64	16.02	15.87	1300-1350	1400-1450
Cotton stalk	70.89	22.43	6.68	43.64	5.81	18.26	17.85	1320-1380	1400-1450
Coconut coir	70.30	26.77	2.93	47.17	6.54	18.20	17.79	1100-1150	1150-1200
Corn cob	80.20	16.20	3.60	45.31	7.16	15.58	15.23	800-900	950-1050
Dhaincha stalk	80.32	17.01	2.67	56.45	8.99	19.63	19.43	800	800-900
Groundnut shell	68.12	24.97	6.91	44.78	6.08	17.20	17.06	1180-1200	1220-1250
Jute stick	75.33	19.00	5.67	54.77	8.20	19.45	19.01	1300-1350	1400-1450
Kikar (Acacia)	77.01	22.35	0.64	45.89	6.08	20.25	19.79	1300-1350	1380-1400
Mustard shell	70.09	14.48	15.43	46.20	6.21	17.61	17.47	1350-1400	1400-1450
Pine needle	72.38	26.12	1.50	46.21	6.57	20.12	19.97	1250-1300	1350-1400
Rice hisk	60.64	19.90	19.48	40.10	6.03	13.38	13.24	1430-1500	1650
Sal seed leaves	60.03	20.22	19.75	46.74	6.72	18.57	18.42	1200-1250	1350-1400
Sal seed husk	62.54	28.06	9.40	48.12	6.55	20.60	20.13	1450-1500	1500-1550

Calorific value of wood at different moisture contents:

Condition of wood	Calorific value (kJ·kg ⁻¹)	G
Freshly cut wood	8200	
Air dry wood	15000	
Oven dry wood	18800	Ref. FAO

Grover 1990

Attilio Citterio

Heating Values.

• <u>Upper heating value</u> (UHV), or Gross calorific value (GCV):

The heating value for the dry fraction of the fuel. Heat of evaporation for water formed from H is not taken into account.

$$\begin{split} UHV &= 0.3491 \chi_{C} + 1.1783 \cdot \chi_{H} + 0.1005 \cdot \chi_{S} - 0.0151 \cdot \chi_{N} - 0.1034 \cdot \chi_{O} - \\ 0.0211 \cdot \chi_{ash} \, [MJ \cdot kg^{\text{-1}}, \, dry \, basis], \quad \text{with } \chi_{i} \text{ in wt.} \% \end{split}$$

• Lower heating value (LHV):

LHV = UHV minus heat of evaporation for water (2.447 MJ·kg⁻¹ water) formed from H [MJ·kg⁻¹, dry basis]

<u>Effective heating value</u> (EHV), or Net calorific value (NCV):
 EHV = LHV minus heat of evaporation for water in the fuel [MJ·kg⁻¹, wet basis]

Fuel Composition and Heating Values.

C, H and O concentrations as well as amounts of volatile matter in different biomass fuels.

Glossary: d.b....dry basis.

Fuel type	C wt.% (d.b.)	H wt.% (d.b.)	O wt.% (d.b.)	volatiles wt.% (d.b.)
Wood chips (spruce, beech, poplar, willow)	47.1 – 51.6	6.1 - 6.3	38.0 - 45.2	76.0 - 86.0
Bark (coniferous trees)	48.8 - 52.5	4.6 - 6.1	38.7 - 42.4	69.6 - 77.2
Straw (rye, wheat, triticale)	43.2 - 48.1	5.0 - 6.0	36.0 - 48.2	70.0 - 81.0
Miscanthus	46.7 - 50.7	4.4 - 6.2	41.7 – 43.5	77.6 - 84.0

N, S and CI concentrations in different biomass fuels Glossary: d.b. ... dry base.

	Nitrogen N mg∙kg⁻¹ (d.b.)	Sulphur (S) mg⋅kg⁻¹ (d.b.)	Chlorine (Cl) mg⋅kg⁻¹ (d.b.)
Wood chips (spruce)	900 - 1,700	70 – 300	50 - 60
Wood chips (poplar, willow)	1,000 - 2,000		
Bark (spruce)	3,000 - 4,500	350 – 550	150 - 200
Straw (winter wheat)	3,000 - 5,000	500 - 1,100	2,500 - 4,000
Miscanthus	4,000 - 6,000	200 - 1,400	500 - 2,000
Triticale (cereals)	6,000 - 9,000	1,000 - 1,200	1,000 - 3,000
Нау	10,000 - 20,000	2,500	2,500 - 4,500
Needles (spruce)	12,000 - 15,000		
Grass	19,000 - 25,000	800	2,600

Concentration ranges of combustion relevant elements in different biomass ashes

(d.b.....dry basis)

Ash/element	Wood chips (spruce)	Bark (spruce)	Straw (wheat, rye, barley)	Cereals (wheat, triticale)
Si [wt% (d.b.)]	4.0 - 11.0	7.0 - 17.0	16.0 - 30.0	16.0 - 26.0
Ca [wt% (d.b.)]	26.0 - 38.0	24.0 - 36.0	4.5 - 8.0	3.0 - 7.0
Mg [wt% (d.b.)]	2.2 - 3.6	2.4 - 5.6	1.1 - 2.7	1.2 - 2.6
K [wt% (d.b.)]	4.9 - 6.3	2.4 - 5.6	1.1 - 2.7	1.2 - 2.6
Na [wt% (d.b.)]	0.3 - 0.5	0.5 - 0.7	0.2 - 1.0	0.2 - 0.5
Zn [mg⋅kg ⁻¹ (d.b.)]	260 - 500	300 - 940	60 - 90	120 - 200
Cd [mg⋅kg ⁻¹ (d.b)]	3.0 - 6.6	1.5 - 6.3	0.1 - 0.9	0.1 - 0.8

	Proximate analysis				Ultimate Analysis						
Sample	VM (wt%)	Fix-C (wt%)	Ash (wt%)		C (wt%)	H (wt%)	O ^a (wt%)	N (wt%)	S (wt%)	Cl (wt%)	HHV (MJ⋅kg⁻¹)
Cellulosic fr.:											
Newspaper	88.5	10.5	1.0		52.1	5.9	41.86	0,11	0.03	n.a.	19.3
Cardboard	84.7	6.9	8.4		48.6	6.2	44.96	0.11	0.13	n.a.	16.9
Recycled paper	73.6	6.2	20.2		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	13.6
Glossy paper	67.3	4.7	28.0		45.6	4.8	49.41	0.14	0.05	n.a.	10.4
Spruce	89.6	10.2	0.2		47.4	6.3	46.2	0.07	n.a.	n.a.	19.3
Plastics:											
HDPE	100	0	0		86.1	13.0	0.90	n.a.	n.a.	n.a.	46.4
LDPE	100	0	0	0	85.7	14.2	0.05	0.05	0.00	n.a.	46.6
PP	100	0	0		86.1	13.7	0.20	n.a.	n.a.	n.a.	
PS	99.8	0.02	0		92.7	7.3	0.00	n.a.	n.a.	n.a.	42.1
PVC	94.8	4.8	0.4		41.4	5.3	5.83	0.04	0.03	47.7	22.8
Multi material											
Juice carton	86.0	6.1	7.9		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	24.4

Attilio Citterio

	Moisture content [wt% w.b.]	GCV [kWh⋅kg ⁻¹ (d.b.)]	NCV [kWh·kg ⁻¹ (d.b.)]	Bulk density [kg(w.b.)⋅m ⁻³]	Energy density [kWh⋅m ⁻³]
Wood pellets	10	5.5	4.6	600	2,756
Wood chips - hardwood - pre-dried	30	5.5	3.4	320	1,094
Wood chips – hardwood	50	5.5	2.2	450	1,009
Wood chips - softwood - pre-dried	30	5.5	3.4	250	855
Wood chips – softwood	50	5.5	2.2	350	785
Grass- high-pressure bales	18	5.1	3.8	200	750
Bark	50	5.6	2.3	320	727
Triticale (cereals) - high-pressure bales	15	5.2	4.0	175	703
Sawdust	50	5.5	2.2	240	538
Straw (winter wheat) - high-pressure bales	15	5.2	4.0	120	482

Biomass having an energy content equivalent to 1 m³ fuel oil.

Fuel oil (0% moisture) 1 m³ 840 kg Pellets (12% moisture) 3.2 m³ 2200 kg

Wood chips (40% moisture) 12 m³ 3800 kg

Fuel Composition and Heating Values.

 $GCV = 0.3491 \cdot \chi_{C} + 1.1783 \cdot \chi_{H} + 0.1005 \cdot \chi_{S} - 0.0151 \cdot \chi_{N} - 0.1034 \cdot \chi_{O} - 0.0211 \cdot \chi_{ash} [MJ/kg, d.b.]$

where χ_i is the content of carbon (C), hydrogen (H), sulfur (S), nitrogen (N), oxygen (O) and ash in wt% (d.b.)

GCV and NCV (assuming zero wt% moisture) as a function of wt% C and H (d.b.), O is calculated by difference, neglecting the influence of N, S, and ash in the fuel.

Attilio Citterio

Fuel Composition and Heating Values.

$$NCV = GCV \cdot \left(1 - \frac{w}{100}\right) - 2.447 \cdot \frac{w}{100} - 2.447 \cdot \frac{h}{100} \cdot 9.01 \cdot \left(1 - \frac{w}{100}\right) \quad \left[MJ / kg, w.b.\right]$$

w moisture content of the fuel in wt% (w.b.)

NCV as a function of wt% moisture (w.b.) for a fuel composition of 50 wt% C, 6 wt% H, and 44 wt% O (d.b.).

Average Calorific Values, Energy Content.

		kJ (NCV)	kgoe (NCV)
Hard Coal	1 kg	17 200 – 30 700	0,411 – 0,733
Recovered Hard Coal	1 kg	13 800 – 28 300	0,330 – 0,676
Patent Fuels	1 kg	26 800 – 31 400	0,640 – 0,750
Hard Coke	1 kg	28 500	0,681
Brown Coal	1 kg	5 600 – 10 500	0,134 – 0,251
Black Lignite	1 kg	10 500 – 21 000	0,251 – 0,502
Peat	1 kg	7 800 – 13 800	0,186 – 0,330
Brown Coal Briquettes	1 kg	20 000	0,478
Tar	1 kg	37 700	0,9
Benzene	1 kg	39 500	0,943
Oil Equivalent	1 kg	41 868	1
Crude Oil	1 kg	41 600 – 42 800	0,994 — 1,022
Feedstock	1 kg	42 500	1,015
Refinery Gas	1 kg	50 000	1,194
LPG	1 kg	46 000	1,099
Motor Spirit	1 kg	44 000	1,051
Kerosene, Jet Fuel	1 kg	43 000	1,027
Naphtha	1 kg	44 000	1,051
Gas Diesel Oil	1 kg	42 300	1,01
Residual Fuel Oil	1 kg	40 000	0,955
White Spirit	1 kg	44 000	1,051
Lubricants	1 kg	42 300	1,01
Bitumen	1 kg	37 700	0,9
Petroleum Cokes	1 kg	31 400	0,75
Other Petro. Products	1 kg	30 000	0,717
Electrical Energy	1 kWh	3 600	0,086

NCV = Net Calorific Value kgoe = kilogram of oil equivalent

- ISO standard (<u>http://www.iso.com/</u>)
 Insurance Service Office
- ASTM standard (<u>http://www.astm.org/</u>)
 ASTM International
- DIN standard (<u>http://www2.din.de/</u>)
 Deutsches Institut f
 ür Normung
- CEN standard (<u>http://www.cenorm.be/</u>)

European Committee for Standardization

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

Deutsches Institut für Normung e.V.

As of April 2015, the EC has approved 19 voluntary schemes that can certify biofuels for all MS. MS must accept these certification schemes and cannot demand anything more than what they cover. The approved voluntary certification schemes are:

- 1. ISCC (International Sustainability and Carbon Certification)
- 2. Bonsucro EU
- 3. RTRS EU RED (Round Table on Responsible Soy EU RED)
- 4. RSB EU RED (Round Table of Sustainable Biofuels EU RED)
- 5. 2BSvs (Biomass & biofuels voluntary scheme)
- 6. RBSA (Abengoa RED Bioenergy Sustainability Assurance)
- 7. Greenergy (Brazilian bioethanol verification program)
- 8. Ensus (Voluntary scheme under RED for Ensus bioethanol production)
- 9. Red Tractor (Farm Assurance Combinable Crops & Sugar Beet Scheme)
- 10. SQC (Scottish Quality Farm Assured Combinable Crops scheme)
- 11. Red Cert
- 12. NTA 8080
- 13. RSPO RED (Roundtable on Sustainable Palm Oil RED)
- 14. Biograce (GHG calculation tool)
- 15. HVO Renewable Diesel Scheme
- 16. Gafta Trade Assurance Scheme
- 17. KZR INIG
- 18. Trade Assurance Scheme for Combinable Crops
- 19. Universal Feed Assurance Scheme

Attilio Citterio

Substances in Living Cells.

The functions of macromolecules are related to their shape and the chemical properties of their monomers. Some of the roles of macromolecules include:

- Energy storage
- Heredity

- Structural support
 Transport
- Protection and defence
- Means for movement, growth, and development
- Regulation of metabolic activities

Biomass Feeding Constituents.

Starch: 70-75% (wheat)

- Rapidly available and hydrolysable
- Basis for actual "bio-refineries"

Oils: 4-7% (wheat), 18-20% (soy)

- Rapidly separable from plant
- Basis for *oleochemistry* and for *biodiesel*

Proteins: 20-25% (wheat), 80% (soy)

- Key components of foods
- Applications in chemical products.

Biomass Non Feeding Constituents.

Lignin : 15-25%

- Complex network of aromatics
- High energy content
- Resists biochemical conversion.

Hemicellulose : 23-32%

- Xylose is the 2nd most abundant sugar in biosphere
- A collection of 5- and 6-carbon sugars linked together in long, substituted chains-branched, marginal biochemical feed.

Cellulose : 38-50%

- Most abundant carbon form in biosphere
- Long polymer chains of betalinked glucose, good biochemical feedstock.

Attilio Citterio

Renewable Bioresource Feedstock

- Plants
 - crops
 - trees
 - algae
- Animals, fish
- Microorganisms
- Organic residues
 - municipal
 - industrial
 - agricultural
 - forestry
- Aquaculture

Bioprocess Technology

Biocatalysis (Enzymes) Fermentation (Microorganisms)

Physical – Chemical Process Technology Extraction Pyrolysis Gasification Etc.

Industrial Bioproducts

- Bioenergy and Biofuels
- Manufactured products:
 - biochemicals
 - biosolvents
 - bioplastics
 - 'smart' biomaterials
 - biolubricants
 - biosurfactants
 - bioadhesives
 - biocatalysts
 - biosensors

EU Targets on Transport Biofuels.

Attilio Citterio

- · European Directive 2003/30/CE
- · Dlgs n. 128 (2005) Allegato I Biocarburanti.
- · Finanziaria 2006- Law n.266 (2005)
- · DLvo 3 aprile 2006 n. 152
- · Finanziaria 2007- art. 26
- · Directive 2009/28/EC

www.agra-net.com

Calendar Year	2009	2010	2011	2012	2013	2014e	2015e	2016e
Gasoline Total	99,246	94,118	90,578	84,769	81,706	77,732	73,944	70,38
Diesel Total	256,026	260,305	255,185	250,647	249,906	250,2	250,75	251,3
On-road	190,695	194,864	195,502	191,39	191,68	192	192,4	192,8
Agriculture	12,64	12,387	12,074	11,491	11,669	11,8	11,9	12
Constr./mining	3,036	3,222	3,191	3,146	3,35	3,4	3,45	3,5
Shipping/rail	6,435	6,472	6,138	6,114	5,53	5,5	5,5	5,5
Industry	11,723	12,184	10,631	10,802	9,545	9,5	9,5	9,5
Heating	31,497	31,177	27,648	27,704	28,132	28	28	28
Jet Fuel Total	49,192	49,217	50,57	49,06	48,926	49	49	49
Total Fuel	404,464	403,64	396,333	384,475	380,539	376,932	373,694	370,68

Ethanol Used as Fuel and Other Industrial Chemicals (Million Liters - EU).

Calendar Year	2009	2010	2011	2012r	2013e	2014e	2015f	2016f
Beginning Stocks	872	621	440	315	88	161	230	170
Fuel Begin Stocks	839	588	407	282	55	128	197	137
Production	4,203	4,918	5,042	5,308	5,561	5,9	5,9	5,9
Fuel Production	3,553	4,268	4,392	4,658	4,911	5,25	5,25	5,25
-of which cellulosic (a)	0	0	0	0	0	75	75	75
Imports	1,136	1,284	1,663	1,245	676	447	270	270
Fuel Imports	899	880	1,285	886	595	367	190	190
-of which ETBE (b)	158	270	261	188	197	109	100	100
Exports	150	126	149	145	113	278	300	280
Fuel Exports	100	76	99	95	63	228	250	230
Consumption	5,44	6,257	6,681	6,635	6,051	6	5,93	5,93
Fuel Consumption	4,603	5,253	5,703	5,676	5,37	5,32	5,25	5,25
Ending Stocks	621	440	315	88	161	230	170	130
Fuel Ending Stocks	588	407	282	55	128	197	137	97
Production Capacity								
Number of Refineries	66	68	68	70	71	71	71	71
Capacity	6,234	7,57	7,759	8,468	8,48	8,48	8,48	8,48
Capacity Use (%)	57	56	57	55	58	62	62	62
Co-product Production (1,000 MT)								
DDG	2,119	2,594	2,664	2,752	2,953	3,229	3,172	3,187
Corn Oil	70	71	67	111	151	155	157	159
Feedstock Use (1,000 MT)								
Wheat	2,736	4,173	4,813	4,209	2,85	3,535	3,306	3,26
Corn	2,414	2,455	2,327	3,84	5,213	5,36	5,398	5,478
Barley	661	608	707	389	618	651	602	598
Rye	959	1,051	666	355	753	769	829	846
Sugar Beet	9,209	10,68	10,882	11,04	11,683	11,509	12,209	12,019
Market Penetration (1,000 TOE)								
Fuel Ethanol	2,327	2,656	2,883	2,87	2,715	2,69	2,654	2,654
Gasoline	99,246	94,118	90,578	84,769	81,706	77,732	73,944	70,38
Blend Rate (%)	2,3	2,8	3,2	3,4	3,3	3,5	3,6	3,8

The ethanol production and exports for industrial chemicals is estimated at respectively 650 and 50 million liters per year. r = revised / e = estimate / f = forecast EU FAS Posts. (a) For more information see section Advanced Biofuels. (b) ETBE in million liters of ethanol. HS code 29091910, ETBE contains 45 percent ethanol. Source: European Commission, Eurostat, Global Trade Atlas, ePURE and EU FAS Posts.

Attilio Citterio

EU Supply & Demand of Bioethanol (in 10⁶ L).

Source: EUFAS Posts

Drivers for the Use of Biomasses as <u>Fuels</u>.

- Increase in the price of fossil fuels and decrease their reserves
- 2. Interest in diversifying agricultural production
- 3. Wider resource delocalization.

Environmental Protection:

- Burning maintains the balance of CO₂ in the atmosphere
- 5. Lower sulfur content
- 6. Higher safety in use and storage.

Fuel from biomasses

A 60% reduction in CO₂ emission can be reached!

Heat of Combustion of Representative Biological Molecules.

	kcal⋅g ⁻¹	kJ∙g⁻¹
Carbohydrates	4.1	17.2
Fats	4.1	17.2
Proteins	9.3	38.9

Biofuels are organic compounds (frequently in mixture solid, gaseous or liquid) which can be used as fuels.

Type:

Solid Biomass (mainly cellulosic)

- Wood, pyrolytic coal, urban and agricultural wastes)
- Liquid Biofuels :

 - Biodiesel
 Bioethanol Biooil
 - Biomethanol
 Biodimethylether
- <u>Biogas</u> (gas of organic waste processing by bacteria) mainly anaerobic, in particular CH_4 and syngas)

Biofuels were used by men for a long time, but in a less processed way (wood, oils).

Biomass Conversion Technologies.

Routes to Make a Biofuel.

Attilio Citterio

Current Pathways

Attilio Citterio

Representative Companies Working on Biofuels.

Attilio Citterio
Source	Forest Wastes	Agri Wastes	Urban Organic Wastes		Sec. 1	SUME V
Ton. of material/year	4500000	200000	95000			
MW	300	18	9.5			
Installed Cost (€·kW ⁻¹)	1600	1900	1600			
Operative Cost (€·kW ⁻¹)	0.06	0.06	0.06			

Biofuel Sources (see Energy Crops).

Attilio Citterio

Biomass Sources.

POLITECNICO DI MILANO

Attilio Citterio

Total Consumption of Liquid Energy Carriers.

POLITECNICO DI MILANO

Attilio Citterio

Cellulose: A polymer of glucose units in β –1,4 linkages. Cellulose is a linear molecule consisting of 1,000 to 10,000 β -D-glucose residues with no branching. Neighboring cellulose chains may form hydrogen bonds leading to the formation of microfibrils with partially crystalline parts. Hydrogen bonding among microfibrils can form microfibers and microfibers react to form cellulose fibers. Cellulose fibers usually consist of over 500,000 cellulose molecules.

Cellulose Structure.

- Main structural component of terrestrial plants
- Polymer made from molecules of glucose monomer
- The acetal bridges can be hydrolyzed to glucose.

Solid Biomass: Starch.

A polymer of α -D-glucose in α -1,4 linkages. Starch consists of two types of molecules, amylose and amylopectin. Amylose is a single chain of glucose units whereas in amylopectin at about every twenty glucose units there is a branch with an α -1,6 linkage. The relative proportions of amylose to amylopectin depend on the source of the starch, *e.g.* normal corn contains over 50% amylose whereas 'waxy' corn has almost none (~3%). Amylose has lower molecular weight with a relatively extended shape, whereas amylopectin has large but compact molecules.

Amylose molecules consist of single mostly-unbranched chains with 500-20,000 α -(1,4)-D-glucose units with a few α -1,6 branches. Amylose can form an extended shape. Hydrogen bonding occurs between aligned chains. The aligned chains may form double stranded crystallites that are resistant to amylases.

Amylopectin is formed by non-random α -1,6 branching of the amylose-type α -(1,4)-D-glucose structure. This branching is determined by branching enzymes that leave each chain with up to 30 glucose residues. Each amylopectin molecule contains one to two million residues, about 5% of which form the branch points, in a compact structure forming granules. The molecules are oriented radially in the starch granule and as the radius increases so does the number of branches required to fill the space, resulting in concentric regions of alternating amorphous and crystalline structure.

Amylopectin Structure.

Attilio Citterio

Oils and Fats – Structure.

- Esters of fatty acids with glycerol
- Liquids or solids depending on the chain length and unsaturations

Oils and Fats – Structure.

- Ordinary oils & fats have a mixed fatty acid composition
- HO Oils (Definition): > 80 % Oleic Acid (C18:1)

Fatty Acid		Low-Temp. Behaviour	High-Temp. Behaviour	Oxidative Stability	Avail- ability	Costs
Caprylic	C8 :0	+ / o	+	++	0	
Capric	C10:0	+/o	+	++	0	
Lauric	C12:0	О	++	++	+	o / -
Myristic	C14:0	-	++	++	+	o / -
Palmitic	C16:0	-	++	++	++	+
Stearic	C18:0		++	++	++	++
Oleic	C18:1	+ / o	+	+	++	+
Linoleic	C18:2	+	-	-	+	o / -
Linolenic	C18:3	++			0	0

⇒ C18:1 - Convincing compromise between technical & economical constraints

Attilio Citterio

What are Liquid Biofuels.

- Liquid biofuels are esters, alcohols, ethers, and other compounds derived from biomass.
- They are renewable fuels which can be made in all climates by using agricultural practices jet developed.
 - Bioethanol: ethanol produced from biomass and/or from biodegradable fraction of wastes
 - *Biodiesel:* a liquid with a diesel quality made from biomass, oil seeds or from used oils
 - Biomethanol: methanol from biomass and/or from biodegradable fraction of wastes
 - Biodimethylether: a fuel produced similarly to methanol.
 - Biooil: a petrol type fuel made by pyrolysis and/or hydrogenation of biomass.

Evolution of Biofuels.

First generation Biofuels :	Corn and sugar to ethanol		
	Chemical trans-esterification of veg. oils		

- Second Generation Biofuels : Lignocellulose to ethanol Enzymatic bioconversion of Vegetable oil Fisher-Tropsch syngas to HC oil
- Third generation Biofuels:Energy crops for bio-alcoholAlgal HydrogenAlgal Oil/Biodiesel
- Fourth generation Biofuels : GMO carbon-negative Energy crops

	Loser in Food vs. Fuel /
First generation Biofuels :	Corn and sugar to ethanol Chemical transesterification of veg oils
Second Generation Biofuels :	Lignocellulose to ethanol Enzymatic bioconversion of Vegetable oil Fisher-Tropsch syngas to HC oil
Third generation Biofuels:	Energy crops for bio-alcohol Algal Hydrogen Algal Oil/Biodiesel
Fourth generation Biofuels :	GMO carbon-negative Energy crops

Evolution of Biofuels (3).

First generation Biofuels :	Still struggling with technologies !! Corn and sugar to ethanol Chemical transesterification of veg oils
Second Generation Biofuels	E Lignocellulose to ethanol Enzymatic bioconversion of Vegetable oil Fisher-Tropsch syngas to HC oil
Third generation Biofuels:	Energy crops for bio-alcohol Algal Hydrogen Algal Oil/Biodiesel
Fourth generation Biofuels :	GMO carbon-negative Energy crops.

First generation Biofuels :	Corn and sugar to ethanol Chemical transesterification of veg oils
Second Generation Biofuels :	Lignocellulose to ethanol Enzymatic bioconversion of Vegetable oil Fisher-Tropsch syngas to HC oil
Third generation Biofuels:	Energy crops for bio-alcohol Algal Hydrogen Algal Oil/Biodiesel
Fourth generation Biofuels :	GMO carbon-negative Energy crops
	Future : Distant or near !!

- Significant Energy from Petroleum feedstock
 - World Petroleum consumption

85 million barrels-day⁻¹ 13.5 million tons-day⁻¹ 4000 million ton-day⁻¹

- 70% goes into transportation : 3000 million tons-year⁻¹.
- World grain production : 2000 million tons-year⁻¹
 - Agricultural biomass production : 10,000 million tons-year⁻¹
 - Potential bioethanol production : 2500 million tons-year⁻¹
 [at 0.25 ton-(ton biomass)⁻¹]

Transport Biofuels – 1st and 2nd Generation.

Fuel	Feedstock	Regions where currently produced	GHG reduction v. petroleum	Production cost	Biofuels yield per hectare	Land types
	1 st g	jeneration bio	fuels, comme	rcially availab	le	
Ethanol	grains (wheat, maize)	US, Europe, China	low-moderate	moderate	moderate	cropland
Biodiesel (SVO, FAME)	oil seeds (rape, soy, sunflower)	US, Europe	low-moderate	moderate	low	cropland
1 st gen	1 st generation biofuels (commercially available mainly in developing countries)					
Ethanol	sugar cane	Brazil, India, Thailand	high	low-moderate	high	croplands
Biodiesel/SVO	palm oil	Southeast Asia	moderate	low-moderate	moderate-high	coastal lands
Biogas (CNG)	wastes, crops	Europe, India	high	low-moderate	high	all land
2 nd generation biofuels (not yet commercially available)						
Ethanol	cellulose, residues	none	high	moderate-high*	high	croplands, marginal lands
Biodiesel (BTL)	cellulose residues	none	high	moderate-high*	high	croplands, marginal lands
other						
Biodiesel/SVO	jatropha	South Asia, Africa	high	moderate-high**	low-moderate	degraded lands
Biogas (SNG, GtL)	biomass, residues	all	high	moderate	high	all land

Attilio Citterio

Potential Advantages of 2nd Generation Biofuels.

- Potential CO₂ reduction of >90% (compared to conventional diesel measured over fuel cycle)
- More efficient use of land, as 2nd generation feedstock can be produced more intensively (higher yields)
- Lower quality of land can be used for 2nd generation feedstock
 so more fuel can be produced
- Can be used in all blends in existing engines without need for modification
- Improved performance compared to 1st generation and conventional diesel, e.g. lower freezing point, higher energy content.

Gas Biofuels (Biogas).

- 1. Anaerobic digestion of organic wastes (also landfills)
 - Fragmentation induced by Microorganisms (mainly *methanogens*) of solid wastes in an anaerobic atmosphere
- 2. Produce a methane rich gas
 - Typically 60% CH₄ and 40% CO₂
 - Energy content 20-25 MJ·kg⁻¹
 - (natural gas = $36 \text{ MJ} \cdot \text{kg}^{-1}$)
- 3. Municipal wastes treatment plants (e.g. Montello S.p.A. plant)
 - Plant with 100 MGD input (12 MW)
- 4. CAFOs
 - Pigs 135,000 animals (8 MW)
 - Cows 318,000 animals (30 MW)

Biogas – Sources and Production.

Substrate	Biogas	Retention Time	
	(m³⋅m⁻³⋅day⁻¹)	(h)	
Primary wastes	0.9-3.0	4-22	
Secondary wastes	0.7-2.4	5-22	
Municipal wastes	2.4-3.6	19-30	
Non-recyclable municipal wastes	0.3-0.6	20	
Primary and secondary wastes	1	10	
Manure	1	10	

Scheme of a submerged small dimension plant for biogas production at low pressure.

Attilio Citterio

Anaerobic Digestion Technology: Process Components.

- Pretreatment (contaminant removal)
- Nutrient balancing (Ni, Fe, Co, Mo, N, P, K, S)
- Water / alkalinity re-use (effluent recycle, strong waste)
- Biomass recycle (high rate)
- Contacting/mixing (digester tank)
- Heating (digester tank)
- Biogas flare

Attilio Citterio

- Fuel management (purification/compression)
- Biogas end use (heat, CHP, transport fuel, fuel cell)
- Fertilizer recovery
- Residue management

Biofuel Production Thermal Methods

Attilio Citterio

"Thermo-chemical Conversion".

Biomass Thermal Conversions.

P. McKendry, Bioresource Technology, 83, (2002), 47-54

Thermal Treatment of Municipal Solid Wastes (MSW).

Gasification Technologies.

Attilio Citterio

Gasification Bases Systems.

Gasification may be one of the best ways to produce clean-burning hydrogen for tomorrow's automobiles and power-generating fuel cells. Hydrogen and other coal gases can also be used to fuel power generating turbines or as the chemical "building blocks" for a wide range of commercial products.

Gas cleaning targets:

- complete tar and benzene decomposition
- over 95 % methane reforming
- H₂/CO ratio suitable to FT-synthesis
- reliable operation
- minimum overall gas cleanup train costs.

Attilio Citterio

Flash Pyrolysis.

Flash pyrolysis.

- Also known as short residence time pyrolysis.
- Involves rapid heating rates and very short contact time for biomass.
- Results in large amounts of liquid product which are quenched out of the system to prevent them going on to react further.
 - Temperature below that required to gasify organic products.
 - Heating to higher temperature (above 650 °C) results in maximisation of gaseous product.
- Liquid products are classed as highly oxygenated, acidic and unstable over time.

Parameter	Convention al Pyrolysis	Flash Pyrolysis
Temperature (°C)	400 - 900	400 - 900
Residence time	Hours	Seconds
Heating rate	Low	High
Product composition (wt %)		
Gas	17	10
Charcoal	35	10
Pyrolytic liquid	25	65
Water	22	12

Property	No. 6 fuel oil	Liquid fuel from RDF
Heating Value (MJ·kg ⁻¹)	42.3	24.6
Density (kg·L ⁻¹)	0.98	1.3
Pour point (°C)	15-30	32
Flash point (°C)	65	56
Viscosity at 87.8 °C (SU's)	90-250	1150
Pumping temperature (°C)	46	71
Atomisation temperature (°C)	104	116
Analysis dry wt %		
С	85.7	57.5
Н	10.5	7.6
0		33.4
S	0.5-3.5	0.1-0.3
CI		0.3
Ν	2.0	0.9
Ash	0.5	0.2-0.4

The presence in the combustion wasted gas of pollutants imposes control technologies to cut down:

- NO_X
- SO₂ /metals
- VOC (volatile organic compounds)

Commonly are used catalytic post combustors and filters able to convert VOC into CO_2 and trap physically or chemically other compounds.

NExBTL Process by Hydrogenation.

NExBTL is a stable and pure hydrocarbon

Biofuels Production Non-thermal Methods Biodiesel

Attilio Citterio

Dr. Rudolph Diesel designed a particular engine in 1894 to run on peanut oil or other fuels of vegetal origin.

Diesel presented its engine at the Word Exposition in 1900.

Diesel died mysteriously in 1913. After its death, the Diesel engine was adapted for the use of a byproduct of the refining process of gasoline, for this named diesel fuel.

The use of vegetable oils as engine fuels may seem insignificant today but the such oils may become, in the course of time, as important as petroleum and the coal tar products of the present time.

-Rudolph Diesel, 1912

- The use of vegetable oils fuel is old (Cyprus metal production 2000 BC), but only in 1900 R. Diesel proposed peanuts oil as fuel for its diesel engine.
- The nowadays attention for biodiesel is limited to fatty acid lower alkyl esters from vegetable oils or, to a minor extent, to animal fats.
- In particular, the more investigated liquid fuel is FAME (fatty acid methyl esters) made by catalyzed trans-esterification of oils with methanol (R = CH₃).

Oil or Fat to FAME.

- Triacylglycerol +
 - methanol (from biomass?)
 - + catalyst gives
 - ester + glycerol
- the hooked tripod molecule
 - is changed to slippery ester chains, thus
- viscosity is reduced from
 - 60 to 4 cSt (like diesel fuel)

FAME = Fatty acid methyl esters

Production of Raw Oil.

- The production of crude oil from the plant seeds can be performed by two completely different procedures. In larger oil processing plants these are usually used in combination. The steps are:
 - Pre-pressing: The oil is pressed mechanically. Nowadays screw presses (expellers) are used. Depending on the size of the press and preheating of the seed, the oil can be pressed out down to a residual oil content of 5% in the feed-stuffs. Pressing without heating allows a very simple oil production from high oil-content oil seeds (e.g. sunflower, rapeseed). However for a better oil yield, preheating of the seed is a necessary pretreatment.
 - Extraction: Here the oil will be removed from the seed nearly 100% by the action of a solvent. Only extraction is used for oil production from low oil-content oil seeds (e.g. soybean). Extraction is much more energy intensive than pressing, it is therefore used in combination with prepressing to remove only the residual oil from the expeller feed-stuff.
 - Byproducts of raw oil production: Expeller and extraction meals are very valuable protein feedstuffs for animal feeding. They contribute to cover the processing costs.

Refining of crude oil: Fuel utilization of vegetable oils requires a refining of the raw oil. After some industrial treatments, the so-called "semi-refined-oil" is available. Further processing steps (like deodorization and bleaching) common in oil refining are not necessary for fuel application.

Transesterification: As early as 1938 a need for chemical modification of vegetable oils was indicated by Walton (1938), who noted that ... "to get the utmost value from vegetable oils as fuels it is necessary to split off the glycerides which are likely to cause an excess of carbon in comparison". During World War II Chinese scientists developed a batchcracking procedure for refining "veg-gasoline" and 'beg-diesel" from plant oil feedstock, using Tung and rapeseed oils in particular (Chang and Wang, 1947). Some military equipment was kept moving this way.

Problems of Vegetable Oil Application in Combustion Engines.

- The major problem when using pure plant oils in direct-injected diesel engines is coke **deposition at the injector** and at the combustion chamber, piston, valves, ... that impedes the engine running in short-or long-term use. The amount of time before power loss and engine deterioration becomes obvious varies with engine time, loading and condition, and the type of vegetable oil. It may be as brief as 10 hours for linseed oil or more than 100 hours for sunflower oil in direct injected engines.
- Problems with buildup of deposits around injector tips are caused by much higher viscosity and carbon content of vegetable oils in comparison with diesel fuel or oil esters.

Issues in the Use of Biodiesel.

- Engine oil dilution: the greatest problem associated to the fact that the methyl ester passes beyond the piston rings into the engine oil. Problems can then arise with inadequate lubrication and gumming of the top piston surface, piston ring and inlet valve.
- Material compatibility: Paints can be dissolved by biodiesel, and asphalt is made soft. Rubber components, such as pipes and seals, may also be affected. On the contrary there is no indication of corrosion of metallic components.
- Winter performance: supply of bio-diesel from the tank (e.g. in the fuel filter) and cold starting are problems. Increase of methanol content can be used but this is impractical for safety reasons (the flash point drops below 55°C). Additives, like flow enhancers, can make the operation safe at temperatures down to -10°C.

Feedstock for Biodiesel Production.

Jathropa: 2-6,000 liters ha⁻¹ year⁻¹

Rapeseed: 1000 liters ha⁻¹ year⁻¹

Soy: 400 liters ha⁻¹ year⁻¹

Palm oil: 5,900 liters ha-1 year-1

Attilio Citterio

Castor: 1.200 liters ha-1 year-1

Botryococcus braunii: 5000 liters·ha⁻¹·year⁻¹

Safflower: 2,500 liters ha⁻¹ year⁻¹

Sunflower: 1,500 liters • ha-1 • year-1

Flax: 1,000 liters • ha-1 • year-1

Macaúba: 4,000 liters·ha⁻¹·year⁻¹

Peanuts: 890 liters • ha-1 • year-1

Babaçú: 1,600 liters ha⁻¹ year⁻¹

Yellow mustard: 1500 liters•ha⁻¹•year⁻¹

		Molecula	ar		Cetane Co	mbustion_Heat	
Name (s)	Acronym_	_ Weight_	Melt°C/°F	_Boil°C/°F	_Number	(kcal·mol^{-1})	
Caprylic_acid	8:0	_144.22_	16.5/61.7	239.3/462.7_			
Capric_acid	10:0	172.27	31.5/88.7	270.0/518.0	47.6	1453.07	
Lauric_acid	12:0	200.32	44.0/111.2	131.0/267.8		1763.25	
Myristic_acid	14:0	228.38	58.0/136.4	250.5/482.9	-	2073.91	
Palmitic_acid	16:0	256.43	63.0/145.4	350.0/662.0	-	2384.76	
Stearic acid	18:0	284.48	71.0/159.8	360.0/680.0	-	2696.12	
Oleic acid	18:1	282.47	16.0/60.8	286.0/546.8	-	2657.40	
Linoleic_acid	18:2	280.45	-5.0/23.0	230.0/446.0	_		
Linolenic_acid	18:3	278.44	-11.0/12.2	232.0/449.6	-	_	
Erucic_acid	22:1	338.58	33.0/91.4	265.0/509.0	-	_	
Methyl_caprylate	8:0	158.24	_	193.0/379.4	33.6	1313.00	
Methyl_caprate	10:0	186.30	_	224.0/435.2	47.7	1625.00	
Methyl_laurate	12:0	214.35	5.0/41.0	266.0/510.8	61.4	1940.00	
Methyl_myristate	14:0	242.41	18.5/65.3	295.0/563.0	66.2	2254.00	
Methyl_palmitate	16:0	270.46	30.5/86.9	418.0/784.4	74.5	2550.00	
Methyl stearate	18:0	298.51	39.1/102.4	443.0/829.4	86.9	2859.00	
Methyl_oleate	18:1	296.49	-20.0/-4.0	218.5/425.3	47.2	2828.00	
Methyl linoleate	18:2	294.48	-35.0/-31.0	215.0/419.0	28.5	2794.00	
Methyl_linolenat	e_18:3	292.46	57.0/-70.6	109.0/228.2	20.6	2750.00	
Methyl_erucate	22:1	_352.60		222.0/431.6	76.0	3454.00	

Content of Fatty Acids in Common Oil Seeds.

Biodiesel (Synthesis).

Methanol (CH₃OH) is used as alcohol. A catalyst is used to speed the process (1 % w/w):

- Commonly a basic catalysis is used (i.e. sodium hydroxide) – because a lower ratio alcohol to glyceride is necessary (6:1). Supported guanidines were used successfully.
- Also acid catalysts can be used but with an higher ratio alcohol/glyceride (30:1) - however, the system tolerate more water and humid substrates.
- Heterogeneous catalysis is quite investigated owing the easy separation and the higher purity reached.
- Also the enzymatic catalysis was proposed – it needs a lower reaction temperature.

Biodiesel Process -Transesterification of Biogenic Oils and Fats.

POLITECNICO DI MILANO

Process Flow Schematic for Biodiesel Production.

Categories of Biodiesel Processes.

POLITECNICO DI MILANO

Categories of Biodiesel Processes (2).

POLITECNICO DI MILANO

Continuous Packed-Bed Reactor.

Schematic Diagram of Lab-Scale Reactor

Esterification is a three step reaction:

- Solubility limited
- Rate limited
- Product inhibition (glycerol) limited

Temperature:

- Solubility Limited: Increasing T increases solubility
- Rate Limited: Reaction rate doubles with a 10 °C increase in T
- Product Inhibition Limited:

 $GL \rightarrow MG$ rate near $MG \rightarrow DG$ rate

Pressure: Operate 10 to 15 psig above alcohol vapor pressure

The reaction must be complete

- Incomplete reactions leave behind Mono-glycerides and Diglycerides
 - They can't be seen, nor can they be washed out
 - They can cause engine problems such as Injector clogging, valve coking, poor emissions and corrosion of some metals.

Product Recovery Steps.

- Ester Glycerol Separation
 - Separation is based upon Ester-Glycerol immiscibility and density differ.
 - Separation is affected by:
 - Glycerol dispersion in ester phase
 - Presence of mono-, di-, triglycerides
 - Presence of un-reacted alcohol
 - pH of the two phases
- Ester Washing and Drying
 - Primary purpose removal of soaps (deionized H₂O free of iron/copper)
 - Secondary purposes: Removal of free glycerol, Removal of catalyst residues, Removal of trace methanol (Spray drying, Vacuum drying, Evaporators, Absorbents)
- Glycerol Recovery
 - Recover methanol by spray drying
 - Neutralize catalyst using mineral acid
 - Removal of catalyst using ion exchange
 - All glycerol processing should take place at > 50 °C
- Methanol Management (> 98%; emission issues)
- Wastewater Considerations: Soapy wash-water contains about 25,000 ppm BOD5.

Melting range °C								
	lodine N.°	Cetane N.°						
Rapeseed oil, h. eruc.	5	0	-2	97-105	55			
Rapeseed oil, I. eruc.	-5	-10	-12	110-115	58			
Sunflower oil	-18	-12	-14	125-135	52			
Olive oil	-12	-6	-8	77-94	60			
Soybean oil	-12	-10	-12	125-140	53			
Cotton seed oil	0	-5	-8	100-115	55			
Corn oil	-5	-10	-12	115-124	53			
Coconut oil	20-24	-9	-6	8-10	70			
Palmkernel oil	20-26	-8	-8	12-18	70			
Palmoil	30-38	14	10	44-58	65			
Palm oleine	20-25	5	3	85-95	65			
Palm stearine	35-40	21	18	20-45	85			
Tallow	35-40	16	12	50-60	75			
Lard	32-36	14	10	60-70	65			

Fuel Properties of Vegetable Oils and their Methyl Esters in Comparison with Diesel Fuel.

Fuel properties	Diesel Fuel	Sunflower oil	Sunflower methyl ester	Linseed oil	Linseed oil methyl ester	Rape oil	Rape oil methyl ester
Specific Gravity (kg⋅cm ⁻³)	0.835	0.924	0.88	0.932	0.896	0.916	0.88
Viscosity (cSt) at 20°C at 50°C	5.1 2.6	65.8 34.9	4.22	50.5	8.4	77.8 25.7	7.5 3.8
Heat of Comb. Gross (KJ·L ⁻¹) Net (KJ·L ⁻¹)	38.4 35.4	36.5 34.1	35.3 33.0	36.9	35.6	37.2 34.3	33.1
Cetane Number	>45	33	45-51			44-51	52-56
Carbon residue (%)	0.15	0.42	0.05		0.22	0.25	0.02
Sulfur (%)	0.29	0.01	0.01	0.35	0.24	0.0001	0.002

Source: Guibet 1988, Pernkopf 1988 and Schsfer and Heinrich, 1990, modified

Biodiesel is a High Cetane Diesel Fuel.

FAME is an ideal compression-ignition fuel

Biodiesel as Super-Diesel.

- Cetane Number : 54-58
- Sulfur below 10 ppm
- No aromatics, no benzene
- Stabile and long lasting (if ox. inhibitors present)
 - efficiency of catalytic converters
- Very low CO, HC, PAH,
 - lower PM₁₀, NO_x better +2°,
- Exorbitant lubricity = additive,
 - Less wear (-50%)
- CFPP -22°C, operability -20°C

Melting Points of Some Methyl Esters of Fatty Acids.

Drawbacks to Biodiesel.

Cold weather performance

- Biodiesel starts gelling about 10°F higher than petrol diesel (depending on the feedstock).
- Currently not any additives to lower the gel point:
 - Can be overcome by blending
 - Future additives will likely be available
 - Can be improved by using different feedstock.

Biodiesel Standards: Properties Specific to Esters.

		Target data Diesel fuel E DIN 51606	Actual data
Density 15°C	g⋅ml⁻¹	0.875-0.890	0.883
Flashpoint	O°	110	Above 170*
Moisture	ppm	300	200
Neutr. number	mg KOH⋅g ⁻¹	0.500	0,200
Total glycerol	%	0.250	0,100
Free glycerol	%	0.020	0,001
Phosphorous	ppm	10	Less than 2
Methanol	%	0.300	Less 0.005
CFPP	°C	-2010. 0	Winter: -22
Viscosity 15°C	mm²⋅s⁻¹ (cSt)	3.5-5.5	1.9-6.0
Description:		Biodiesel from FAME	
*same flashpoint		99/-20(-10. 0)	

Fatty Acid (FA)	Positive Effects	Negative Effects
Saturated	Cetane numberOxidation stability	 Cold stability
Polyunsaturated	 Cold stability 	 Oxidation stability
Short chain FA	 Distillation Curve 	 Flash point
Long chain FA		ViscosityCold stability

Biofuels Production in the European Union (EU).

POLITECNICO DI MILANO

Biodiesel Production in the European Union (EU 27) by 2006-2014 (×10³ t).

Source: EurObserver – Biofuels Barometer, May 2014

		Fuel speci	ifications								
1st series of tests			Petrodiesel						B 100	Limits	D6751-02
B 100 Soy			D23	B5/D23	B20/D23	B5/D23	B20/D23	B20/D40		D100 B-FTS	B 100
Blended at		°C		-5	-5	20	20	20		-	
1 Flash point	ASTM D 93A	°C	46			46	47		184	40 min.	100 min.
2 Water & sediments	ASTM D 2709	vol. %	0.005						0.035	0.05 max.	0.05 max.
3 Viscosity at 40°C	ASTM D 445	cSt	2.024			2.096	2.332		4.1	1.70 à 4.10	1.9 à 6.0
4 Sulfur	ASTM D 2622	% mass								0.05 max.	.05 max.
5 Sulfated ash	ASTM D 874	% mass									.02 max.
6 Copper strip corrosion	ASTM D 130		1a				1A		1a	n°1 max.	n° 3 max.
7 Cetane number	ASTM D 613		41.1			44.0	46.7		52.0	40.0 min.	
8 Cloud point	ASTM D 2500	°C	-25	-21	-15	-21	-15	-23	-3 à +4	-23 max.	note d
9 Carbon residue at 10%	ASTM D 4530	% mass	0.03			0.06	0.11			0.16 max.	
9 Carbon residue at 100%	ASTM D 4530	% mass							0.03		.050 max.
10 Free Glycerin	ASTM PS 121	% wt.							0.002		.02 max.
10 Total Glycerin	ASTM PS 121	% wt.							0.188		.240 max.
11 Acid number	ASTM D 974 / D 664	mgKOH⋅g⁻¹	0.10				0.10		0.3	0.10 max.	0.80 max.
12 Water by Karl Fisher method	ASTM D 6304	mg∙Kg⁻¹	39.0						776		
13 Energy content	ASTM D 240	BTU-lbs ⁻¹	19554						17119		
14 Lubricity (180 minutes	ASTM D 6079	mm	0.420			0.225	0.180		0.145		
15 Carbon content		% wt.	86						78		
Hydrogen content		% wt.	14						13		
Oxygen content		% wt.	0						9		
16 Density ay 15°C	ASTM D 4052	kg∙m⁻³	840.4			842.6	849.0				
17 LTFT	ASTM D 4539	°C	-22	-22	-14	-22	-14	-21	2		
18 Thermal Stability	ASTM D 6468	% riflect.					98				
19 Distillation at 90%	ASTM D 86	°C	315.0			322.0	334.0			360 max.	
20 Conductivity at 23°C	ASTM D 2624	pS⋅m⁻¹	253				604			25 min.	
21 Ash	ASTM D 482	% mass								0.010 max.	

POLITECNICO DI MILANO
Lower Emission of Exhaust Smoke. Biodiesel is a clean burning fuel and provides a number of benefits in terms of emissions and environmental effect when compared to conventional petroleum-based diesel, including:

- close-to-zero sulfur content
- significantly lower exhaust particulates and hydrocarbons
- significant reduction of CO
- significantly lower lifecycle greenhouse gas emissions.
- no significant decrease of NO_x is observed.
- non-toxic

100% biodiesel

Source: US National Biodiesel Board

Exhaust Emissions in 13-mode test on Biodiesel - EURO I.

g⋅kWh⁻¹

Barriers in the Development of Biodiesel.

- Feedstock prices very high
- Stability of oil price
- Fluctuations of prices of vegetal oils and minerals
- New precursors for biodiesel production?
- The glycerin issue

In Italy the «Finanziaria 2005 (art. 43)» have defined a six year program to 2010, for the use of biodiesel, exempting from excise for an annual share of 300.000 tons. Mixtures of gasoil-biodiesel with a biodiesel content ≤5% can be sell to consumption both to extra network users and in network, whereas those ≥25% can be sell only extra network. The law limits the possibility to use in Italy neat biodiesel (i.e. 90% rapeseed oil, 10% alcohol) without excise exemption.

Feedstock-Price

Biodiesel Price vs. Raw Material and Co-product.

POLITECNICO DI MILANO

Biofuels Production Non-thermal Methods Bioethanol

POLITECNICO DI MILANO

Energy diagram of the ideal CO₂-Glucose-EtOH cycle.

First generation: bioethanol from starch or sugars *Second generation*: bioethanol from cellulose and hemicellulose

Illustrative Example – Cost Distribution by Type of Ethanol.

□Feedstock ■Capital □Enzyme □Other

1G ethanol (corn)

Assumptions:

- Corn @ USD 5.25/bushel
- Depreciations (Plant cost USD 2.00/gal)
- Other = energy, water, yeast, chemicals & labor
- Enzymes: USD 0.04/gal

Sugarcane ethanol

Assumptions:

- Sugar cost equiv. to USD 0.18/lb.
- Depreciations (Plant cost USD 6.50/gal)
- Other = energy, water, yeast, chemicals

2G ethanol (biomass)

Assumptions:

- Biomass @ USD 50/ton
- Depreciations (Plant cost USD 7.50/gal)
- Other = energy, water, yeast, chemicals & labor
- Enzymes: USD 0.50/gal

Source: Novozymes - 2014

Biofuel History: Bioethanol.

- H. Ford designed the engine Model T in 1908 to be used with ethanol as anti-knock agent. Ethanol blends (E75 - 25% ethanol, 75% gasoline) account for 25% of sales in Midwest (DOE) until 1940 with more than 2,000 stations. Ethanol was mainly from wheat.
- 1940s Low priced, Middle-East oil eliminate ethanol from market, with consequences on rural world.
- 1970s World energy crisis: US subsidies for ethanol blends. Some countries (i.e. Brazil) becomes main producers.
- 1978 MBTE become oxygenate of choice and ethanol use dropped.
- Eco-environmental regulations in 1990' stimulate the demand for ethanol as oxygenated fuel (MBTE in 2000 phased-out)
- Ethanol is commercialized blended with gasoline (E10, E85, E95)
- Ethanol production capacity was 10-12 billion gallons by 2010.

Ethyl alcohol can be obtained from a wide variety of plants sugar rich via fermentation processes.

 $C_6H_{12}O_6 \rightarrow 2 CH_3CH_2OH + 2 CO_2$

Fermentation is a disproportionation reaction of glucose to ethanol and CO₂

Sources:

- Starch (from seeds)
- **Sucrose** (from sugar cane, sugar beet, etc.)
- Cellulose (from hardwood and softwood).

Despite some problem of food competition and land use, ethanol industry can solve issues of soil preservation and rural overproduction.

Potential Biofuels Feedstocks.

ABUNDANT & AVAILABLE

Attilio Citterio

Dry-Grind Corn-to-Ethanol Fermentation: Summary of Inputs and Outputs.

Chemistry of Ethanol Fermentation.

Essentially the fermentation is a way used by organisms to extract energy from the environment. The quite complex biochemical process occurs in cells. In simplified form can be summarized as depicted in the annexed scheme, the main intermediates involved are pyruvic acid (or pyruvate) and acetaldehyde.

Chemistry of Ethanol Fermentation (2).

Adenosine Triphosphate (ATP) is considered to be the energy currency of life. It is the high-energy molecule that stores the energy we need to do just about everything we do. It consists of adenine (a DNA base) bonded to ribose (a 5 atom sugar) to form adenosine, with three phosphate units linked to the terminal OH group of ribose.

Nicotinamide adenine dinucleotide (NADH) is an essential cofactor in some reactions catalyzed by enzymes (is the reduced form of NAD). Generate hydrogen for reductive reactions.

Oxidation Phase: Glycolysis and Pentose Phosphate Pathway.

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Attilio Citterio

Reduction Phase.

The Three Stages of Catabolism.

Ethanol Producing Bacteria and Yeast.

Organism	Substrate used
Yeast	
Saccharomyces cerevisiae	Glucose, fructose, galactose, maltose, maltotriose and xilulose
S. carlsbergensis	Glucose, fructose, galactose, maltose, maltotriose and xilulose
Kluyeromyces fragilis	Glucose, galactose and lactose
Candida tropicalis Bacterium	Glucose, xylose and xilulose
Zymomonas mobilis	Glucose, fructose and sucrose
Clostridium thermocellum	Glucose, cellobiose and cellulose

Ethanol Yield: 91% at 10-18% max. concentration.

Ethanol recovery from bioreactor:

- High temperature evaporation/distillation
- Selective filtration through hydrophobic membranes.

Production of fuel ethanol is already a large business (10% of Liquid Fuels in 2015).

Europe

Ethanol production 0.7 billion liters For potable ethanol: 4.2 billion liters Recent directive from the EU Com. is 20% alternative sub. in 2020 on biofuels (mix of biodiesel and bioethanol)

2% in 2005, 6% in 2010, 8% in 2020 estimated bioethanol (2014) from corn based sources: 3.5 billion liters.

Bioethanol production trend in USA

World Fuel Ethanol Production (2002-2010).

World Map of Sugar Cane.

Attilio Citterio

(in liters of dry alcohol equivalent per ha) 6500 6000 5931 5500 5000 4500 4000 3500 3000 2500 +3,77% as average on 29 years Price (\$) per GJ 2000 2024 1500 100 Market conditions (Oct. 2002) US\$ / GJ Fonte: Detagro Ethanol (produ<u>cers BR)</u> 1980 1986 1996 10 1990 1993 1999 Gasoline (Rotterdam) 250,000 0 50,000 100,000 150,000 200,000 Accumulated Ethanol Production (1000 m³)) **Attilio Citterio** POLITECNICO DI MILANO

Bioethanol in Brazil.

Consumer price

Brazilian Fuel Ethanol Statistics

	2010	2011	2012	2013	2014
Production *	24.52	20.21	20.74	23.72	25.91
Imports*	0.074	1.1	0.055	0.2	0.24
Exports*	0.56	1.08	2.5	2.8	3
Consuption *	22.16	19.59	18.59	21.53	23.68
Nameplate Capacity *	41.3	42.8	41.6	40.7	40.7
Number of Refineries	430	418	408	399	399

POLITECNICO DI MILANO

Relative Performance of Ethanol Engines.

Feedstock	Yield (L·ton ⁻¹)	Feedstock	Yield (L·ton ⁻¹)
Apple	61	Wheat	355
Barley	330	Green waste	176
Buckwheat	348	Paper mill waste	204.4-309
Cellulose	259	Wood / furnishing	173
Corn	355-370	Paper waste	252
Oats	265	Herb Straw	229
Potato	96	Wheat straw	227
Sugar beet	88	Forestry residues	250
Sugar cane	160-187	Agricultural wastes	189
Paper	416	Urban solid waste	68

Substrate	Cellulose %	Hemi-cellulose %	Lignin %
Newspaper	59.6	18.5	18.8
Cardboard	60.0	14.1	11.3
Regular newspaper	69.3	10.4	14.4
Office	80.3	10.4	0.9
Municipal Solid Waste	33.0	9.0	17.0

Drivers for Global Fuel Ethanol Development.

Simplified Dry-milling Process-Diagram Converting Starch to Ethanol.

POLITECNICO DI MILANO

The Corn to Ethanol Process.

Attilio Citterio

$C_6H_{12}O_6 \rightarrow 2 CH_3CH_2OH + 2 CO_2$

Process Water System and Balance.

DDGS (Distiller's Grain and Solubles).

- From a corn bushel (25.4 kg) about 8.63 kg of distiller's grains and solubles (DGS) can be obtained as by product of ethanol bioprocess.
- DDGS con be useful to increase the corn potentiality in the ethanol production because it is a good feeding for animals (10-40%).
- Its content in proteins, carbohydrates, phosphorus and fibers are higher than corn.

However:

- Calcium and potassium content are lower than original seeds.
- Nitrogen and phosphor content can be higher.

It is important to take in consideration:

- The effect of seed nature on quality and nutrient profile.
- The effect of different manufacturing techniques on nutrient content.
- The effect of feeding with humid DDGS instead dry on growth, health and other characteristics of animals.

	Wet Milling	Dry Milling	Mean weight
Electricity & Fuel	\$0.112	\$0.131	\$1.118
Labor cost, Repair and Maintenance	\$0.124	\$0.109	
Yeast, Enzymes, Chemicals and other	\$0.114	\$0.090	
Administration, Insurance and Taxes	\$0.038	\$0.037	
All Other Costs	\$0.072	\$0.051	
Total Cash Costs	\$0.46	\$0.42	
Combined with "NET" cost of wealth	\$0.48	\$0.53	\$0.94
Depreciation (imp./ Eq.)	\$0.10-\$0.20	\$0.10-\$0.20	,
Notice: Investment costs of ethanol production are estimated between \$1.07 per gallon and \$2.39 per gallon, depending on type, dimension and technology plant.			

Source: Encyclopedia of Energy (Ethanol Fuels , Charlie Wyman)

Raw material for cellulose:

- Low density feedstock
- Costly pre-treatment
- Sophisticated enzymes
- New biocatalysts needed
- Low co-product value
- Product recovery.

Process Design and Economics for Biochemical Conversion of Lignocellulose Biomass to Ethanol.

Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover.

Technical Report NREL/TP-5100-47764 May 2011

Amounts of feedstock needed to produce 11,00 ml ethanol.

Fiber Depolymerization Issues.

- Cereal fibers contain more components:
 - Cellulose which can be degraded to glucose (via dextrin)
 - Hemi-cellulose which can be degraded to a so called pentose (xylose, arabinose)
 - Lignin
- Yeasts can ferment glucose to ethanol, and more or less completely pentoses
- Productive efforts are addressed to :
 - Pre-treatments opening of structure different technologies (acids, enzymes, steam explosion)
 - Degradation of Cellulose via Cellulase Enzymes
 - Use of hemi-cellulose via hemicellulases genetically modified to ferment pentoses

Agricultural Residues

Diagram of Steam Explosion Reactor.

Attilio Citterio

Allow cellulase access to cellulose polymers by disrupting cell wall structure.

Attilio Citterio

- ✓ Dissolve
 Hemicellulose
- ✓ Displace Lignin
- ✓ Swell Cellulose Bundles

Mineral acid gives good hemicellulose sugar yields and high cellulose digestibility. H₂SO₄ usual choice because of low cost. Requires downstream neutralization and conditioning.

Typical conditions:

100-200°C, 50 to 95% moisture, 0-1% H_2SO_4 . Some degradation of hemicellulose sugars. Cellulase enzymes are also used to release glucose, cellobiose, and other sugars (mainly xylose).

Inhibitors Formed During Hydrolysis.

Several alternatives were proposed:

> Chemical:

option 1: precipitation changing the pH by Ca(OH)₂ and H₂SO₄:

- Step 1: pH 9-10, at 50-60 °C
- Step 2: pH 6, at 30 °C
- Step 3: filtration at 0.2 µm

option 2: adsorption on active carbon, diatomaceous earth or ion exchange resins

- Physical: separation by vacuum evaporation inhibitors (acetic acid, furfural)
- Enzymatic: laccase and peroxidase enzymes, active on phenolic compounds
- Microbiological: degradation by Saccharomyces cerevisiae, quite active toward acetic acid..

Currently the cost has been reduced twelve-fold to approx. \$0.50 per gallon. However, combining the recent enzyme improvement with new pretreatment technologies, the cost is expected to be further reduced.

Attilio Citterio

Lignocellulose Bioethanol Process: Demonstrated Cost Reductions from R&D.

Attilio Citterio

Corn Grain vs. Biomass: Why the Difference in Enzyme Cost?

Corn

72% Starch10% Cellulose/Hemicellulose9% Protein4% Oil4% Other

Yield = 114 gallons ethanol per dry ton = 18 lbs. corn grain per gallon Enzyme usage ~ 0.26 g protein-L⁻¹

Corn stover

38% Cellulose32% Hemicellulose17% Lignin13% Other

C5 sugars

Acid pretreated corn stover 56% Cellulose 5% Hemicellulose 28% Lignin 13% Other

Yield = 72 gallons ethanol/dry ton = 30 lbs. corn stover per gallon Enzyme **usage ~26 g protein-L**⁻¹ Cellulase - cellulose surface interaction

E1 from A. Cellulotiticus

POLITECNICO DI MILANO

Attilio Citterio

Cellulose Hydrolysis by Cellulase Enzymes.

POLITECNICO DI MILANO

Attilio Citterio

155

Complex Mixture of Enzymes Needed to Degrade Arabinoxylan.

Attilio Citterio

Enzymatic Depolymerization.

- 1. Cellulose
 - Cellulases
 - Optimize with the Biocatalyst
- 2. Xylose
 - Xylanases, Xylosidases
- 3. Glucuronoxylan
 - α-Glucuronidase; Xylosidase
- 4. Acid Hydrolysis

Biocatalyst

- 1. High Growth Rate
- 2. High Cell Yield
- 3. High Product Yield
 - Volumetric Productivity
 - Specific Productivity
- 4. Purity of the Product
 - Optical
 - Chemical
- **5. Minimal Growth Requirements**
- 6. Metabolic Versatility
- 7. Co-utilization of Various Sugars
- 8. Tolerate High Sugar Concentration
- 9. Resistance to Inhibitors
- **10. Insensitive to Product Inhibition**
- 11. High-value Co-products
- 12. Amenable to Genetic Engineering
- 13. Robust
- 14. Cellulases
- 15. Xylan degradation

Yeast Metabolism: Pentose Fermentation.

Organism	Specific Activity* (mmol/min/mg)	Reference
Orpinomices XynA	4500	X. Li 2005
Bacillus sp. strain T-6	288	Khasin et al. 1993
Clostridium sp. Strain SAIV	36	Muity, Chandra 1992
Fibrobacter succinogenes S85	34	Muity, Forsberg 1992
Trichoderma longibrachiatum	130	Roger, Nakas 1991
Aspergillus syndowii	204	Ghoh, Nanda 1994
Aspergillus ficheri	588	Raj, Chandra 1996

* All specific activities were compared on purified enzyme basis. The temperatures for assaying the enzymes were in the range of 40 to 50°C.

State of Cellulose Fuel.

- Technologies for converting Cellulose are presently widely investigated on industrial scale and are economically available.
 - For long time, the main variable for industry was the cost to produce most efficient enzymes to convert cellulose into alcohol.
- Two other significant variables for a valued industry of biofuels from cellulose are:
 - availability of feedstock (i.e. tonnage composition)
 - production logistics, harvesting, storage and transport of cellulose biomasses.

In 2012 the Italian firm Biochemtex started the first plant in EU of bioethanol from lignocellulosic feedstock at 40000 ton-year⁻¹.

Technical Barriers to II Generation Ethanol.

Attilio Citterio

Technology Development Needs.

Strategie di Processo per l'Etanolo da Biomasse Lignocellulosiche.

Mass, carbon, and energy balance diagram for the overall Bioethanol process from Corn Stover.

Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover, NREL/TP-5100-47764 (2011)

Attilio Citterio

Biofuel Alternatives to Ethanol: the Microbial Hydrocarbon Derivatives.

POLITECNICO DI MILANO

Attilio Citterio

An Integrated Approach (Bio-refinery).

- Using feedstock from agriculture, forestry and organic wastes we can obtain:
- Fuels, fertilizers and animal feed
- Thousand of potential coproducts (furfural, xylitol, carbon dioxide, lactic acid, glycerol,)
- Create a Bio-refinery
- An holistic view will be necessary.

Integrated Biomass Utilization System.

Schematic of an Integrated Bio-refinery.

Attilio Citterio

Directions in Plant and Agricultural Biotechnology for II/III/IV Generation Biofuels.

- Generate treatment friendly biomass
 - Changes in cellulose-lignin-hemicellulose structure
 - Decrease lignin content/Increase cellulose content
- **Co-production of enzymes like cellulases** e.g. INPLANT technology at QUT, Australia
- High yield, drought/pest resistant, low-input biomass
 - Increase solar efficiency from <1 w/m² to >5 W/m²
 - Increase yield to average 100 ton/ha
 - To grow on marginal non-agricultural land
 - High yield Perennial grasses !
 - More efficient CO₂ fixing varieties
- Technologies to replenish soil micronutrients
 - Synergic crops
 - Development of micro-floral species e.g. N-fixing microbes.

GHG Emissions from Biofuels and Conventional Fuels.

Attilio Citterio

* The range in emissions arises from different modes of hydrogen transport.

Global CO₂ Development - Different Fuels.

Algal Oil or Oilgae and Algal Biomass

Growth of microscopic plants in water medium permits better use of sunlight and nutrient Carbon Dioxide.

Strains of micro-algae and other algae can produce (vegetable) oil or biodiesel (up to 50% of biomass).

Comparison of Crop Biomass vs. Algal Biomass:

1 hectare \rightarrow 100 ton max biomass \rightarrow 25 ton ethanol \rightarrow 5-15 ton oil \rightarrow 5 -15 ton biodiesel

against algal case which gives (*in best cases!*)

 \rightarrow 100 ton algal oil \rightarrow 100 ton biodiesel

Biofuels from Algae.

Only three options seem to have a potential volume of more than 5% of fuel consumes. If it will be decided to promote them with an <u>active policy</u>, an **optimistic** development will be (% fuel consumption):

	Biofuels	Natural Gas	Hydrogen	Total
2005	2*			2
2010	5*	2		8
2015	(7)**	5	2	14
2020	(8)**	10	5	(23)

*Just ruled in UE following the Kyoto protocol

**Foreseen by UE

European Directives.

- **European Directive 98/70/EC**: only a 5% biodiesel blend is authorized. If it is higher, the customer must be informed.
- **European Directive 2003/30/CE**: 2 and 5.75 % of the gasoline and diesel used in the transport sector should be obtained from biofuels within respectively 2005 and 2010.
- **European Directive 2003/96/EC**: the Member States are allowed to totally or partially exempt biofuels from excise tax. Taxation on biofuels is established by each Member State.
- **European Directive 2009/28/EC**: Biofuels use was extended to replace 10% of transport and residential fuels.

Communications:

- **Biomass Action Plan** (December 2005)
- An EU Strategy for Biofuels (February 2006)

Objectives:

- ✓ To promote large-scale biofuel production, both in Europe and in Southern countries
- To promote energy farming in Southern countries, especially the ones affected by the sugar reform

European Council of 23-24th March 2006:

- Renewable energy: **15%** of the total energy use by 2015
- Biofuels: 8% of the energy use for transport by 2015

(among the renewable sources a quantitative target is established only for biofuels)

European Directive Objective for Biofuels consumption.

Attilio Citterio

Production and Share of Biofuels in EU-27 (1990-2012).

	Production			Share in Transport Fuels		
					of Biogasoline in	of Biodiesel in
	Total Biofuels	Biodiesel	Biogasoline	Total Biofuels	Motor Gasoline%	Gas/Diesel Oil
	ktoe		%			
1990	6	6	0	0,00%	0,00%	0,00%
1991	7	7	0	0,00%	0,00%	0,00%
1992	20	16	2	0,00%	0,00%	0,00%
1993	48	25	18	0,00%	0,00%	0,00%
1994	135	95	25	0,00%	0,00%	0,10%
1995	222	188	24	0,10%	0,00%	0,20%
1996	313	268	39	0,10%	0,00%	0,20%
1997	401	338	53	0,10%	0,00%	0,30%
1998	383	310	63	0,10%	0,00%	0,20%
1999	441	369	58	0,10%	0,00%	0,30%
2000	709	634	59	0,20%	0,00%	0,40%
2001	886	789	70	0,20%	0,00%	0,50%
2002	1186	997	159	0,30%	0,10%	0,60%
2003	1472	1183	239	0,40%	0,20%	0,70%
2004	2155	1780	266	0,50%	0,30%	0,90%
2005	3211	2365	452	0,80%	0,50%	1,20%
2006	5497	3683	742	1,50%	0,80%	2,00%
2007	7462	5302	1032	2,10%	1,10%	2,90%
2008	8878	6613	1384	2,70%	1,70%	3,80%
2009	10646	7941	1706	3,30%	2,30%	4,60%
2010	11717	8915	1980	3,70%	3,00%	5,00%
2011	10541	8465	1743	3,90%	3,20%	5,20%
2012	11532	9188	2036	4,20%	3,30%	5,80%

0,00%

0,00% 0,00%

0,00%

0,10%

0,20%

0,20% 0,30%

0,20%

0,30% 0,40%

0,50% 0,60%

0,70%

0,90% 1,20% 2,00% 2,90% 3,80% 4,60% 5,00% 5,20% 5,80%

Ethanol. In the EU, ethanol production for fuel (mainly from wheat, coarse grains and sugar beet) is projected to reach a maximum of 9.7 Bln L in 2020 when the RED target is assumed to be met and then to decrease to 9.3 Bln L by 2025 because of assumptions of decreasing gasoline use. Ligno-cellulosic biomass based ethanol should remain marginal over the period 2015-2025.

Biodiesel. Global biodiesel production is expected to reach 41.4 Bln L by 2025 corresponding to a 33% increase from the 2015 level. The EU is expected to be the major producer of biodiesel. Policy rather than market forces will continue to influence production patterns in almost all countries. In the EU, biodiesel production is projected to reach its maximum in 2020 when the RED target is met with 12.6 Bln L. A significant amount of this increase should be met by biodiesel produced from waste oil and tallow.

School of Industrial and Information Engineering Course 096125 (095857) Introduction to Green and Sustainable Chemistry

Life Cycle Analysis of Biofuels.

Ethical Reservation.

Environmental advantages and disadvantages

CO₂ neutral (?) Energy source saving Organic wastes reduction Less transport etc.

Use of land Surface water eutrophication Pesticides water pollution Intensive production of energy etc.

Attilio Citterio

Life Cycle Comparison.

Plant size (MT stover per day)

When producing fuels by energy cropping the knowledge of the necessary inputs and the produced energy output is very important to achieve a good result. There are usually two ways to do it:

- a) Calculating the relationship between output and input energies and
- b) Obtaining the difference between output and input energies, that is called "net energy gain".

In the following example, are presented the average values obtained for sunflower and rapeseed oils compared to ethanol obtained from sugar beet, maize and wheat for Austrian conditions (2003).

The overall energy balance for the vegetable oils and their methyl esters including agricultural production and conversion is a very positive one, with a final energy ratio ranging between 2:1 to 3:1, considerably higher than for alcohol. This ratio proves that energy supplied by oils from vegetable origin is higher than the sum of the energies used for its production during agricultural processing, seed crushing, vegetable oil refining and its transesterification.

Crop product	Yield primary product (kg·ha ⁻¹)	Energy ratio output/input	Net energy gain output/input (GJ·ha ⁻¹)	
Sunflower oil	2600	2.8	43.3	
Rapeseed oil	2700	2.8	43.4	
Ethanol from				
Sugar beat	60000	1.3	39.2	
Maize	7700	1.3	18.4	
Wheat	4400	1.1	5.2	

"HEY, I THOUGHT WE WERE WORKING WITH THE SAME DATA ..."

Attilio Citterio

Feedstock Variability.

731 corn stover samples from the 2001 harvest

Fertilizer	Amount (kg⋅ha⁻¹)	Energy Equivalents (GJ·ha-1)
Ν	140	8.40
P ₂ O ₅	60	0.84
K ₂ O	120	0.72
CaO + MgO	300	0.45
		10.41
Seeds	10	0.24
Plant protection (3 treatments each with 1 kg/ha active ingredients; Energy (all included))	0.79	
Fuel consumption (seed bed preparation, harvesting, handing, drying, cleaning, prim. tillage	4.0	
Machinery, building	2.0	
Total energy for technical equivalent in 496 L·ha ⁻¹ Diesel	17.44	

Composition and Specific Energy of Rape Seed and Rape Straw.

Rape seeds	mass	specific energy	product mass % x
	(%)	(MJ⋅kg⁻¹)	specific energy (GJ·ha ⁻¹)
Fat	42.2	37.21	15700
Crude protein	20.6	22.44	4623
Fiber	5.8	18.71	1065
N-free substances	19.0	16.06	3061
Sp. energy of rape seed			24.462 MJ⋅kg⁻¹
Rape straw			
Fat	1.2	37.21	0.447
Crude protein	2.5	22.44	0.561
Fiber	37.8	18.71	7.072
N-free substances	38.7	16.06	5.213
Sp. energy of rape seed			14. 296 MJ⋅kg⁻¹

TOTAL equivalent to 4431 L·ha⁻¹ Diesel-fuel

155.98 GJ·ha⁻¹

Attilio Citterio

Mass Flow Diagram for the Production of Rape Seed Oil and FAME for 1 Hectare.

Energy Flow Diagram for the Production of Partially Purified Rape Seed Oil.

Energy Flow Diagram for the Production of Rape Oil Methyl Esters.

Biodiesel (FAME) vs. Diesel.

Greenhouse effects

1st generation biofuels

Fonte: www.ifeu.de

\mathbf{CO}_{2} Balance of Biofuels (2).

Attilio Citterio

Emissions Reductions from Biofuel Production and Use.

Source: IEA, 2005 and EMPA (biodiesel from palm oil). Note: Reduction in well-to-wheels CO_2 -equivalent GHG emissions per kilometer

Attilio Citterio

Net Energy Balance of Ethanol Biofuel (comparative studies).

http://www.anl.gov/Media_Center/News/2005/NCGA_Ethanol_Meeting_050823.ppt#1

Biofuels from Residues.

Results: Biofuels versus Biofuels.

Evaluation of Alternative Fuels (2010).

	EURO	Unreg.	Degrad.	Engine	Costs +	LCA-
	4	Emiss.	+ Toxic.	wear	Availab.	CO_2
CNG	*			×	*	××
LPG	*		×	×	*	×
Methanol (NG)	*		×	×	*	×××
BIODIESEL	*	*	*	*		**
Biofuel (B5D)	●/米		×	*	*	
Biofuel (E15D)	●/米		×		*	
Biofuel (E85G)	●/米	●/米		×		*
ETBE/Gasoline	●/米	●/米	×	×	*	

\times PROBLEMATIC **•** PROMISING ***** VERY PROMISING

Environmental assessment

- In general, biofuels save fossil energy and GHG compared to conventional energy supply. Exemptions exist and explanations can be given.
- Solid biofuels usually perform better than liquid biofuels from energy crops.
- Biogas options based on energy crops lie within the range of liquid and solid biofuels. Detailed analyses are necessary to determine their impacts. Some biogas options have quite a high potential to save GHG.

Sustainable potentials

- Because of competition for land and competition in the usage of biomass the potentials for energy crops are limited.
- If energy crops are used for biofuels, biggest greenhouse gas savings are associated with high yield crops like SRF, sugar beet or wheat.
- Lignocellulose has by far the biggest sustainable mass potential (energy crops and residues). This comes along with very effective greenhouse gas savings.

Production costs	Eur/toe	Production costs	Eur/toe
Biodiesel	720	Ethanol from sugar beet	716
BTL from straw	1008	Ethanol from wheat	649
BTL from farmed wood	1147	Cellulosic ethanol from straw	957
Diesel (da petrolio)	550	(Anno 2010)	

'BTL' = 'Biomass to Liquid', biodiesel di 2° generazione

1 TOE = 41.87 GJ = 11.63 MWh

Note: Ethanol: wholesale price, US, Omaha; Biodiesel: Producer price, Germany, net of biodiesel tariff and energy tax. Source: OECD/FAO (2016), "OECD-FAO Agricultural Outlook", OECD Agriculture statistics (database), http://dx.doi.org/10.1787/agr-data-en. StatLink insp http://dx.doi.org/10.1787/888933381654

Attilio Citterio

2014 – Actual Fuel Cost in EU-28.

En/In EURO								
	Euro-super 95 (I)	Automotive gas oil (I)	Gasoil Heating gas oil (II)	Fuel oil - (III) Sulfur ≤ 1%	Fuel oil - (III) Sulfur > 1%			
	1000L	1000L	1000L	t	t			
Austria	1.386,00	1.316,00	901,66	547,70				
Belgium	1.617,10	1.401,90	802,60	455,90				
Bulgaria	1.303,81	1.329,38	821,56					
Croatia	1.412,20	1.340,16	859,32	690,16				
Cyprus	1.420,87	1.430,83	1.017,90	746,08				
Czech Republic	1.337,36	1.332,17	880,63	409,01				
Denmark	1.665,73	1.454,82	1.505,20	1.067,81				
Estonia	1.280,00	1.260,00	945,00					
Finland	1.620,00	1.457,00	1.046,00					
France	1.500,00	1.299,40	872,30	525,48				
Germany	1.571,00	1.374,00	832,33					
Greece	1.670,00	1.358,00	1.246,30	575,65				
Hungary	1.342,74	1.353,44	1.353,44	662,69				
Ireland	1.573,00	1.479,00	1.038,23	807,43				
Italy	1.734,90	1.615,28	1.390,44	548,70				
Latvia	1.289,00	1.257,50	864,63					
Lithuania	1.337,61	1.276,52	771,26		519,40			
Luxembourg	1.335,24	1.186,82	738,56					
Malta	1.440,00	1.360,00	1.050,00					
Netherlands	1.735,00	1.416,00	1.029,00	501,00				
Poland	1.263,38	1.233,44	874,50	566,14	495,02			
Portugal	1.550,00	1.312,00	1.265,00	690,27				
Romania	1.393,73	1.413,16	1.106,47	561,03				
Slovakia	1.466,00	1.342,00		614,60	607,96			
Slovenia	1.441,00	1.355,00	1.019,00	667,08				
Spain	1.415,68	1.326,62	869,41	536,89				
Sweden	1.577,40	1.532,78	1.295,37	977,70				
United Kingdom	1.615,61	1.674,71	773,87					
CE/EC/EG EUR 28 (IV) Weighted average	1.558,44	1.408,04	906,58	608,43	509,66			
CE/EC/EG Euro Area 18 (€) V) Weighted average €	1.586,04	1.384,57	897,51	565,08	607,96			

Attilio Citterio

Comparison of Technologies Economic versus Environmental Aspects.

Attilio Citterio

Costs: Longer-term Prospects.

Costs:

- 1st generation: 80% of production costs is cost of oil seed feedstock
- 2nd generation: potentially cheaper feedstock; higher capital costs for production method
- Lowered by using crops with higher yields (e.g. *jatropha*; palm, *miscanthus*) and mass production of biofuels
- Costs of 2nd generation likely to be less volatile, whereas costs of conventional diesel to become more volatile?

Prices:

- Affected by national taxes and subsidies
- Price of other fuels

Costs for Biofuel Production (High Yield).

	Cash Price for	Breakeven	Base Cro	Base Crop is						
		Enter the fu	utures price	for	Corn	\$3.60				
		Enter your	expected lo	cal basis		\$0.60				
		Expected lo	ocal cash pr	ice for	Corn	\$3.00				
	Base crop = 1	1	0	0						
		Corn	Soybean	Wheat	Barley	Drybeans	Oil Snflr	Conf Snflr	Canola	Flax
-	Yield	101	31	42	57	14.7	13.7	12.5	13.2	23
	Price	\$3.00	\$6.94	\$5.90	\$3.98	\$18.07	\$17.21	\$20.58	\$19.17	\$9.30
	Income	\$303.00	\$215.28	\$247.64	\$226.67	\$265.70	\$235.84	\$257.19	\$253.03	\$213.98
	Variable costs:									
	seed	\$38.36	\$32.59	\$13.80	\$11.00	\$31.00	\$16.32	\$23.60	\$18.15	\$6.40
	herbicide	8.00	8.00	14.20	12.50	24.00	15.50	15.50	17.50	14.71
	fungicide			5.00	1.25					
	insecticide						5.00	11.00	7.00	
	fertilizer	43.25	0.10	33.93	25.61	21.09	17.32	14.54	31.76	17.10
	crop insurance	17.70	8.30	10.30	4.91	15.30	7.52	12.35	10.90	5.55
	fuel & lube	19.74	11.88	14.27	15.46	15.87	15.21	15.69	12.35	14.78
	repairs	15.46	10.43	11.42	12.03	13.02	11.96	12.15	10.44	12.01
	drying	13.64					2.74	2.52		
	misc.	1.00	1.50	1.00	1.00	1.00	1.00	5.75	1.00	1.00
	operating int.	6.29	2.91	4.16	3.35	4.85	3.70	4.52	4.36	2.86
	Total var.costs	\$163.44	\$75.71	\$108.08	\$87.11	\$126.13	\$96.27	\$117.62	\$113.46	\$74.41
	Return over variable costs	\$139.56	\$139.56	\$139.56	\$139.56	\$139.56	\$139.56	\$139.56	\$139.56	\$139.56

Note: - Only variable costs are considered in this comparison. You can include an amount under "misc." to account for any differences between crops in fixed costs, labor, management and risk.

Attilio Citterio

Costs for Biofuel Production (Low Yield).

Cash Price for	Breakeven	Return ove	er Variable	e Costs - N	orth West I	N.D.	Base Crop	o is	Corn		
	Enter the fu Enter your e	tures price expected lo	for cal basis	Corn	\$3.60 \$0.60						
	Expected lo	cal cash pr	ice for	Corn	\$3.00						
Base crop = 1	1	0	0								
•	Corn	S. Wht	Durum	Barley	Oats	Oil Snflr	Field Pea	Canola	Flax	W. Wht	Lentils
• Yield	63	28	29	47	58	12.1	31	13.7	19	32	13.5
Price	\$3.00	\$5.27	\$5.19	\$3.09	\$2.43	\$14.00	\$4.76	\$13.86	\$7.44	\$4.40	\$10.93
Income	\$189.00	\$147.63	\$150.62	\$145.09	\$141.05	\$169.34	\$147.50	\$189.82	\$141.42	\$140.82	\$147.57
Variable costs:											
seed	\$26.03	\$8.63	\$10.50	\$6.25	\$7.50	\$15.98	\$19.20	\$18.15	\$4.80	\$6.00	\$13.30
herbicide	11.00	14.30	14.30	13.80	4.88	23.65	20.00	20.50	20.71	8.15	23.50
fungicide		1.50	1.50	1.25							
insecticide						5.00		7.00			
fertilizer	26.01	21.00	22.16	22.54	24.48	16.86	6.47	37.63	14.50	25.66	4.70
crop insurance	15.00	6.50	7.10	3.89	6.44	8.44	3.81	8.50	5.50	6.50	7.71
fuel & lube	11.73	8.77	8.80	10.37	10.75	9.36	10.97	9.64	9.21	8.84	10.96
repairs	11.68	9.48	8.70	9.64	9.80	9.35	10.61	9.33	9.49	8.48	10.95
drying	8.51					2.42					
misc.	5.00	5.00	5.00	5.00	5.00	5.00	4.00	5.00	5.00	5.00	4.00
operating int.	4.60	3.01	3.12	2.91	2.75	3.84	3.00	4.63	2.77	2.75	3.00
Total var.costs	\$119.56	\$78.19	\$81.18	\$75.65	\$71.60	\$99.90	\$78.06	\$120.38	\$71.98	\$71.38	\$78.12
Return over variable costs	\$69.44	\$69.44	\$69.44	\$69.44	\$69.44	\$69.44	\$69.44	\$69.44	\$69.44	\$69.44	\$69.44

Note: - Only variable costs are considered in this comparison. You can include an amount under "misc."

to account for any differences between crops in fixed costs, labor, management and risk.

- Crop insurance for corn is only available by written agreement. An estimate is used.

Sustainability Concerns.

- Concerns over potential impacts of growing crops for biofuels on:
 - Competition with food
 - Biodiversity (e.g. forest clearance)
 - Water and soil resources
 - Greenhouse gas balance

 No useable, common sustainability standards or certification for biofuels

 "A misjudged push for the wrong kinds of 'green' fuels could damage the climate and destroy the world's last remaining rain forests"

Environmental NGOs (inc. WWF, Greenpeace and Friends of the Earth) May 2007

Link to Biomass.

- Alternative Fuels Data Center <u>www.eere.energy.gov/afdc/</u>
- Biomass Energy Foundation
 <u>www.woodgas.com</u>
- Canadian Renewable Fuels Association
 <u>www.greenfuels.org</u>
- European biomass association <u>www.ecop.ucl.ac.be/aebiom</u>
- Federazione di Produttori di Energia Rinnovabili Fiper <u>www.fiper.it</u>
- Istituto di Ricerche sulla Combustione-CNR <u>www.irc.na.cnr.it</u>
- Italian Biomass Association <u>www.itabia.it</u>
- The Anaerobic Digestion Network
 <u>http://mara.jrc.it/adnett.html</u>

http://www.eere.energy.gov/afdc/index.html http://www.energyinstitution.org/Alt%20Fuels%20Index%20free%20requ est.htm http://www.soygrowers.com/ http://catf.vizonscitec.com/ http://www.bera1.org/ http://www.greenfuels.org/ http://www.cleanfuelsdc.org/ http://www.biotanefuels.com/biotane/index.htm http://nreldev.nrel.gov/vehiclesandfuels/npbf/ http://www.biodiesel.org/ http://www.worldenergy.net/