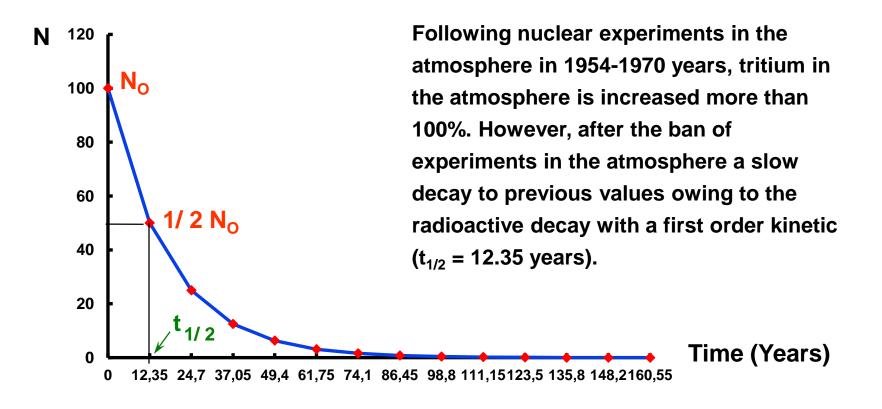

School of Industrial and Information Engineering Course 096125 (095857) Introduction to Green and Sustainable Chemistry

Hydrogen as Energy Carrier

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta" http://<u>iscamap.chem.polimi.it/citterio/education/course-topics</u>/



Isotopes Deuterium and Tritium.

Property	Н	D	Т
Isotopic abundance (%)	99.98	0.0156	10 ⁻¹⁸
Relative atomic mass /u.m.a.	1.007825	2.014102	3.016049
Nuclear spin quantic number	1/2	1	1/2
Magnetic moment n./(magnetons) ^a	2.79270	0.85738	2.9788
NMR frequency (at 2.35 tesla)/MHz	100.56	15.360	104.68
NMR rel. sensitivity (at cost. field)	1.000	0.00964	1.21
Quadrupole moment n./(10-28 m ²)	0	2.766×10 ⁻	³ 0
Radioactive stability	Stable	Stable	β ⁻ t _{1/2} 12.35 y

^a') Nuclear magneton μ_{N} = eh/2m_p = 5.0508 × 10⁻²⁷ J T⁻¹. ^b) E_{maximum} = 18.6 keV; E_{mean} = 5.7 keV.

Kinetic Law of Exponential Decay of Tritium.

$$\ln \frac{N}{N_0} = -k \cdot t \qquad \mathbf{t_{1/2}} = \text{ half life}$$

Attilio Citterio

Property ^(a)	Hydrogen	Deuterium	Tritium
М.р. / <i>К</i>	13.957	18.73	20.62
B.p. / <i>K</i>	20.39	23.67	25.04
Heat of fusion /kJ mot ¹	0.117	0.197	0.250
Heat of evaporation /kJ mol ¹	0.904	1.226	1.393
Critical temperature /K	33.19	38.35	40.6 (calc.)
Critical pressure /atm	12.98	16.43	18.1 (calc.)
Bond Energy /kJ mol ¹ (a 298 K)	435.88	443.35	446.9
Zero point Energy /kJ mol ¹	25.9	18.5	15.1
Internuclear distance /pm	74.14	74.14	(74.14)

(^a') Data rifer to H₂ of natural isotopic composition. All data concern mixtures of *orto* and *para* forms at equilibrium at R.T..

HYDROGEN CATION (PROTON) and **OXONIUM ION**

IONIZATION POTENTIAL $H^{\bullet}(g) \rightleftharpoons H^{+}(g) + e^{-}$ I.P. = 1311 kJ·mol¹(r = 1.5 pm)PROTON AFFINITY : $H^{+}(g) + H_2O(g) \rightleftharpoons H_3O^{+}(g)$ $- \Delta H \cong 720 kJ \cdot mol^{1}$

HYDRATION ENERGY:

$$\begin{array}{rcl} H_2O_{(l)} \\ H^+ (g) & \rightleftarrows & H_3O^+ (aq) \\ \end{array} & - \Delta H \cong 1090 \ kJ \cdot mol^1 \end{array}$$

HYDRIDE ANION

ELECTRON AFFINITY: $H(g) + e^{-} \rightarrow H^{-}(g)$ $- \Delta H_{calc} \cong 72 \ kJ \cdot mol^{-1}$

Hydride ion exists only combined with very electropositive cations, NaH, CaH₂, LiAlH₄. Ionic hydrides are powerful reducing compounds: NaH + $H_2O \rightarrow NaOH + H_2$

MOLECULAR HYDROGEN CATION
$$H_2$$
 (g) $\rightarrow H_2^{\bullet+}$ (g) + e⁻ $E_{leg.} = 255 \ kJ \cdot mol^1$ (436) $r = 106 \ pm$ (74.2)

Hydrogen Combined Sources on Earth.

- Hydrogen gas is very rare in the Earth's atmosphere (1 ppm by volume) because of its light weight, which enables it to escape from Earth's gravity more easily than heavier gases. However, hydrogen is the third most abundant element on the Earth, mostly on the surface and in the earth's crust in the form of chemical compounds:
 - > water (H_2O)
 - organic matter, a wide variety of molecules which combine C-H and C-C bonds in living organisms (fats, sugars, proteins, etc.) or in dead organisms (petrol, natural gas, coal)

Hydrogen is not a Source of Energy -Need to be Produced.

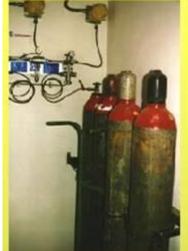
- The world Hydrogen capacity is ~ 58 Mtons/year (650 bn Nm³/year)
- Not one of top 50 chemicals by industrial tonnage (sulfuric acid is first, at 295 Mton worldwide in 2013)
- If compare by moles, the output is 29000 billion moles H_2 to 3010 billion moles H_2SO_4 .

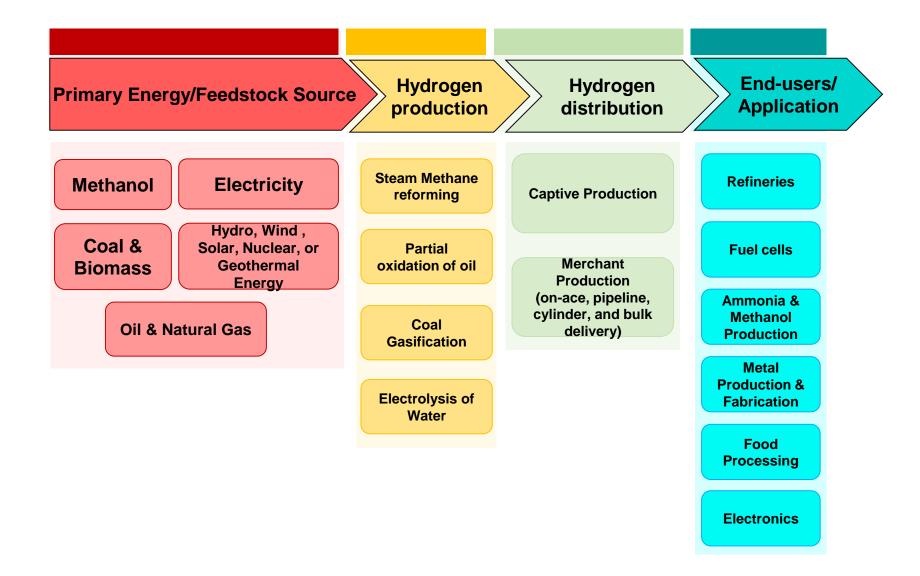
$$moles = \frac{Mass in gram}{Molecular weight}$$

 $MW_{H_2} = 2.02 \text{ u.m.a.}$ $MW_{H_2SO_4} = 98.08 \text{ u.m.a.}$

 The <u>energy density</u> per unit *volume* of both <u>liquid hydrogen</u> and <u>compressed hydrogen</u> gas at any practicable pressure is significantly less than that of traditional fuel sources, although the energy density per unit fuel *mass* is higher.

Preparation, Production, Purification.

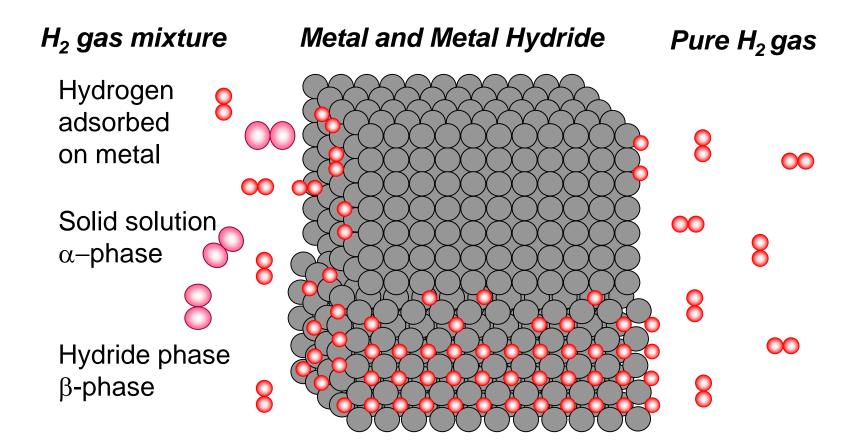

 $\Rightarrow \underline{\text{Laboratory}} : \text{Metal (M)} + \text{Acid (HX)} \rightarrow M^{n+} + n X^{-} + H_2 \quad E^{\circ} < 0-0.4 V$ $\text{Metal (M)} + \text{Hydroxide (XOH)} \rightarrow M(OH)_n^{-} + X^{+} + H_2 \quad [M = AI]$ $\text{CaH}_2 + 2 H_2 O \rightarrow \text{Ca}(OH)_2 + 2 H_2$


⇒ Industrial production ("steam creaking" of oil at 400°C):

i) $CH_4 + H_2O \xrightarrow{1100^\circ C} CO + 3 H_2$ $\Delta H^\circ = + 183.6 \ kJ \cdot mol^{-1}$ ii) $C + H_2O \xrightarrow{1000^\circ C} CO + H_2$ $\Delta H^\circ = + 131.3 \ kJ \cdot mol^{-1}$ (water gas) and $CO + H_2O \xrightarrow{400^\circ C} CO_2 + H_2$ $\Delta G^\circ = -19.9 \ kJ \cdot mol^{-1}$

or <u>Water electrolysis</u> when high purity need (> 99.95%) $H_2O \xrightarrow{\text{Electric current}} OH^- / H^+ 1/2 O_2 + H_2$ (or through NaCl)

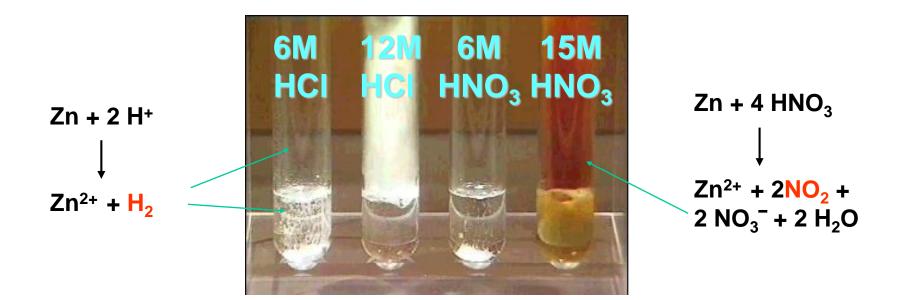
Purification : Adsorption on molecular sieves Diffusion through metallic membranes (Pd)



Attilio Citterio

POLITECNICO DI MILANO

Hydrogen Purification by Metallic Membranes.



potassium	
sodium	
calcium	
magnesium	
aluminum	
zinc	
chromium	
iron	
nickel	
tin	
lead	
copper	
silver	
platinum	
gold	

- Reacts violently with cold water
- Reacts slowly with cold water
- Reacts very slowly with steam, but quite reactive in acid
- Reacts moderately with high levels of acids
- **HYDROGEN** comes here
- Unreactive in acid

ZINC Corrosion by Acids

$$(E^{\circ} Zn/Zn^{2+} = -0.77 V < E^{\circ} H^{+}/H_{2} = 0.0 V)$$

 $(E^{\circ} Zn/Zn^{2+} = -0.77 V < E^{\circ} HNO_{3}/NO_{2} = 0.94 V)$

Molecular Hydrogen Properties and Reactivity.

Colorless, odorless, tasteless gas (d = $0.0799 \text{ g} \cdot \text{m}^{-1}$) with low solubility in liquids. Highly combustible, it explodes with air if it is 4–74% concentrated. At RT reacts:

$$H_2 + F_2 \xrightarrow{>-100^{\circ}C} 2 \text{ HF} \qquad H_2 + PdCI_{2 (aq)} \xrightarrow{\text{R.T.}} Pd_{(s)} + 2 \text{ HCI}_{(aq)}$$

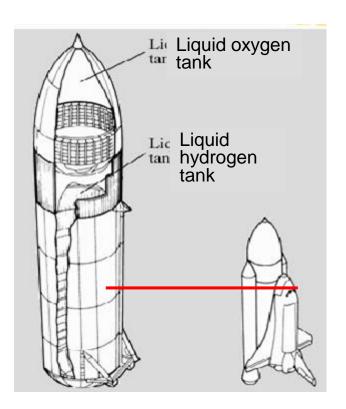
At higher temperatures it reacts with all metals to give the corresponding hydrides, and with non metals to give covalent hydrides, frequently under VIII group B metal catalysis (Raney Nickel, Pd/C, Fe, or by thermal and photochemical initiation):

$$x/2 H_2 + M \rightarrow MH_x$$
 $3 H_2 + N_2 \xrightarrow{450^{\circ}C} 2 NH_3$

Photochemical Reaction: UV irradiation ($\lambda = 300 \text{ nm}$) or Δ $Cl_2 \xrightarrow{hv} 2 Cl_{\bullet}$ Initiation $Cl_{\bullet} + H_2 \rightarrow HCl + H_{\bullet}$ Initiation $H_{\bullet} + Cl_2 \rightarrow HCl + Cl_{\bullet}$ Propagation $2 X_{\bullet} \rightarrow X - X$ Termination $Cl_2 + H_2 \rightarrow 2 HCl$ Overall Reaction

Hydrogen Uses.

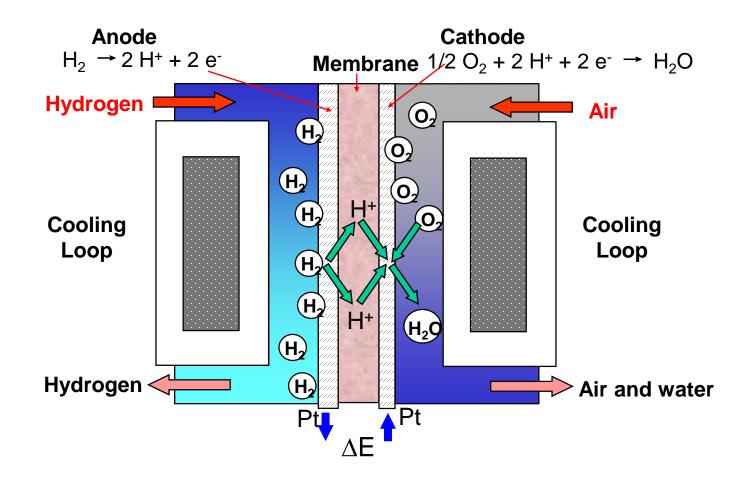
Synthesis of Ammonia* (10⁸ tons/year, Cost: 190 \$/t).


 $N_{2(g)} + 3 H_{2(g)} \approx 2 NH_{3(g)}$

- Synthesis of methanol (CO + 2 $H_2 \neq CH_3OH$).
- Catalytic hydrogenation of unsaturated fats (margarine).
- Synthesis of hydrogen chloride (HCI) from elements.
- Chemical reagent for reductions.
- Synthesis of metal hydrides (CaH₂, LiAIH₄, NaBH₄, boranes, etc.)
- Metal production by reduction of corresponding oxides (Mo, W)
- Soldering (oxygen and atomic hydrogen torches)
- Rocket fuel
- Fuel cells for energy production.

*N.B. half amount converted into NH_3 via Haber process.

Hydrogen as Fuel and Hydrogen Economy.


$$2 H_2 + O_2 \rightarrow 2 H_2 O \quad \Delta G = -242 \ kJ \cdot mol^{-1}$$

- Chain reaction with initiation
- Highest known specific enthalpy (energy per gram of fuel) - 121 kJ·g⁻¹
- Bulky due to low density (note size of H_{2(liq.)} tank compared to O_{2(liq.)} tank of rocket)
- The hydrogen economy consists of an economic system in which energy is supplied by renewable and regenerable resources. Hydrogen can be the medium of energy storage and transport.

$$2 H_2 + O_2 \rightarrow 2 H_2 O \quad \Delta G = -242 \ kJ \cdot mol^{-1}$$

Attilio Citterio

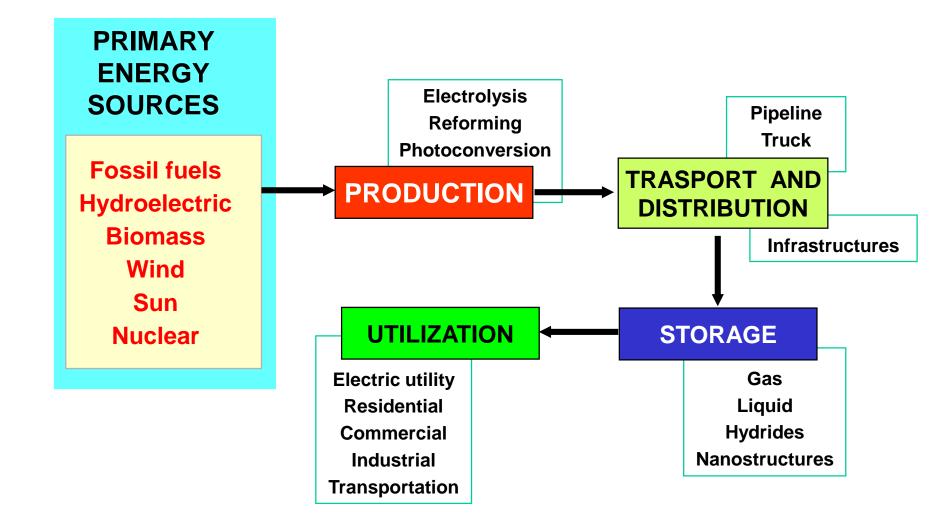
Uses of Hydrogen as Chemical Reagent: Hydrogenation - Hydrogenolysis – Desulfurization.

Most unsaturated organic compounds (having double or triple bonds) react with H_2 in the presence of homogeneous (R_3RhH) or heterogeneous (Pd/C, etc.) hydrogenation catalysts, reducing the number of unsaturation :

$$H_2 + R-CH=CH_2 \rightarrow R-CH_2-CH_3$$
 $H_2 + R-C=CH \rightarrow R-CH=CH_2$

Sometimes it undergoes reaction with other molecules (i.e. CO in reactions called hydroformylation) :

$$H_{2} + R-CH=CH_{2} + CO \rightarrow R-CH_{2}-CH_{2}CH=O \rightarrow R-CH_{2}-CH_{2}CH_{2}OH$$


Hydrogen reduces C-X bonds to C-H (hydrogenolysis) at high T and under catalysis:

$$H_2 + X-CH_2-CH=CH_2 \rightarrow H-CH_2-CH=CH_2 + HX$$
 X = CI, OR, NRR', SR


S substitution by H is an important reaction in oil refinery (desulfurization) :

$$C_4H_4S + 4H_2 \rightarrow C_4H_{10} + H_2S$$

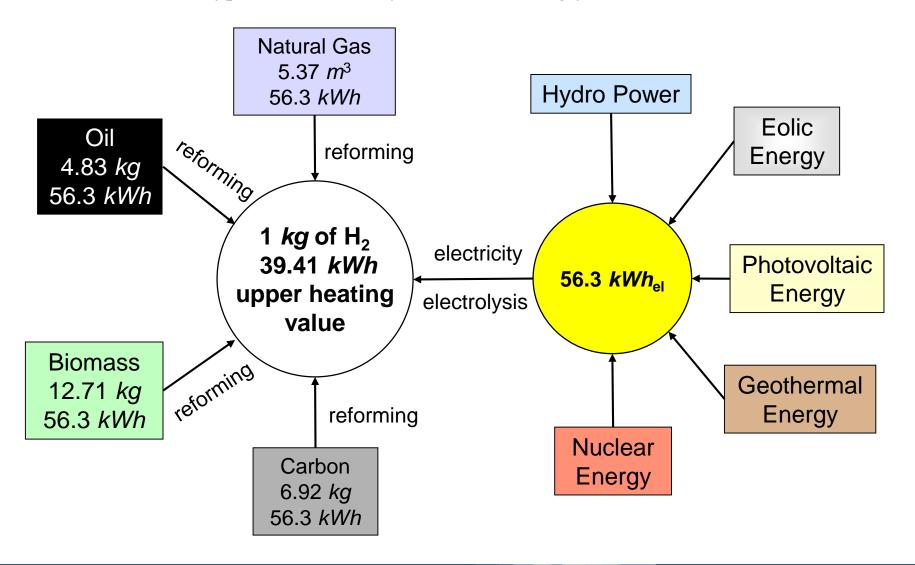
thiophene butane

The Route "Hydropower – HYDROGEN – Fuel Cells".

POLITECNICO DI MILANO

Attilio Citterio

Hydrogen from non-renewable sources:


- Hydrogen from carbon $(C + H_2O \rightarrow H_2 + CO)$
- Hydrogen from reforming (CH₃OH + H₂O \rightarrow 3H₂ + CO₂)
- Hydrogen by electrolysis (electricity produced from NR sources)

Hydrogen from renewable sources:

- Photovoltaic Hydrogen (PV)
- Hydrogen directly from Sun
- Other routes of Hydrogen Production from Sun
- Biomass

Integrated Hydrogen Production.

(Hypothesis: electrolysis and reforming yield 70%)

	Content for volume unit		Content for mass unit	
	[<i>kJ</i> • <i>m</i> ⁻³]	[<i>kWh</i> •m ⁻³]	[<i>kJ∙kg⁻</i> ¹]	[<i>kW-kg⁻¹</i>]
Lower heating value	10.800	3	120.000	33.3
Upper heating value	12.770	3.54	141.890	39.41

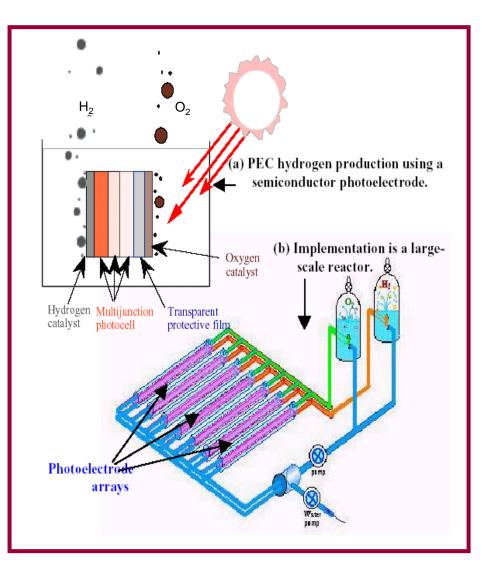
Standard Conditions : T = 273.15 K, P = 1.013 bar

Photovoltaic (PV) Hydrogen.

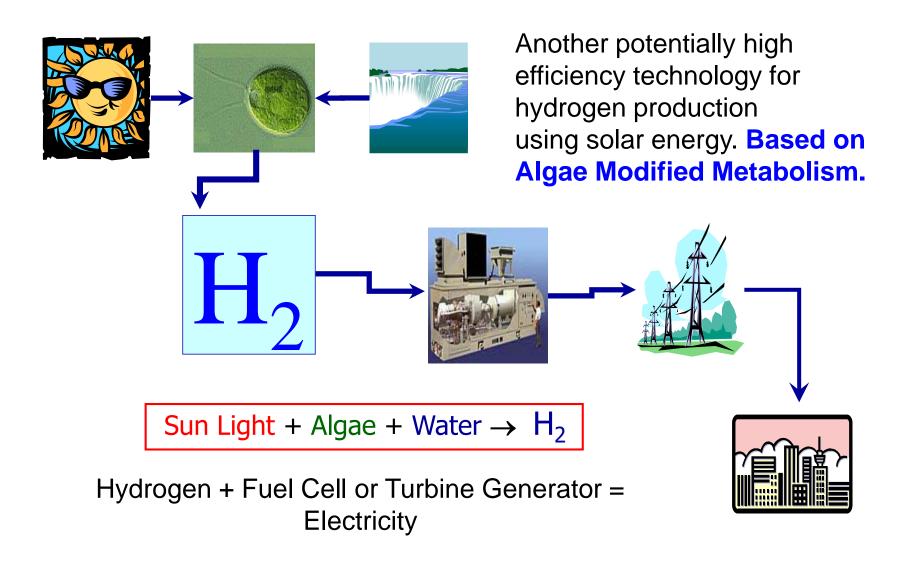
- Stuart Energy Systems P3-1A Fleet Fuel Appliance
 - Installed at SunLine Transit Agency
 - PV system generates 18 kW of total 200 needed by electrolyzer (remainder of power is hydroelectric)
 - 1490 SCFH hydrogen produced at 4000 psig

Attilio Citterio

• 67 % overall efficiency.



- Agder College, Norway
 - 80 kW PV array
 - 50 kW electrolyzer
 - 20 kW PEM fuel cell.


Photo-Electrochemical Hydrogen.

- Direct electrochemical production of hydrogen induced by sunlight.
- Potentially more efficient than PV electrolysis.
- Still early in development.

(based on the fact that the overall sun spectral energy is higher than ΔG°_{f} of H₂O)

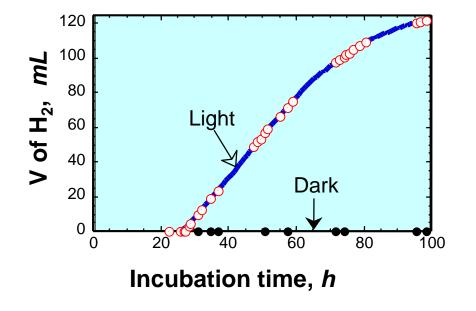
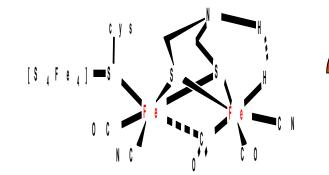


Photo-biological H_2 Production.

KEY METABOLIC MODIFICATION to induce reversible production of H_2 : sulfur loss from algae.



Algae culture without sulfur and normal green. Prof. Melis, UC Berkeley.

Time sequence in the production of hydrogen in *Chlamydomonas* reinhardtii.

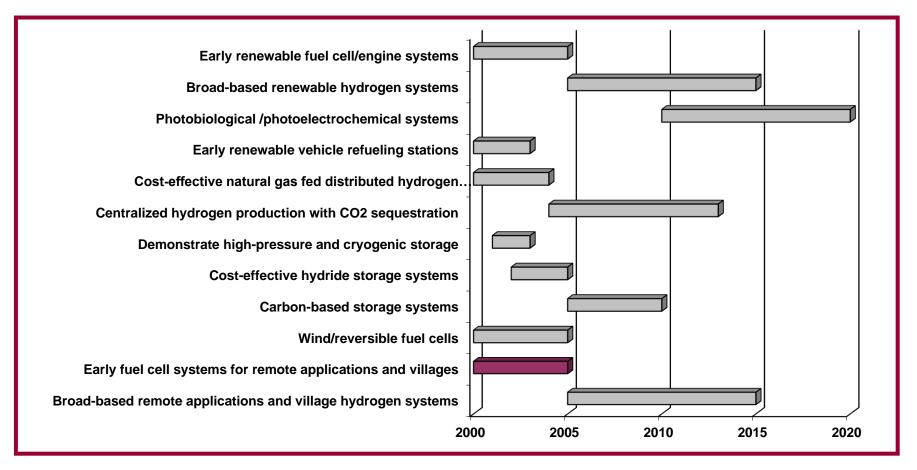
POLITECNICO DI MILANO

Mimicking Nature for Hydrogen Production.

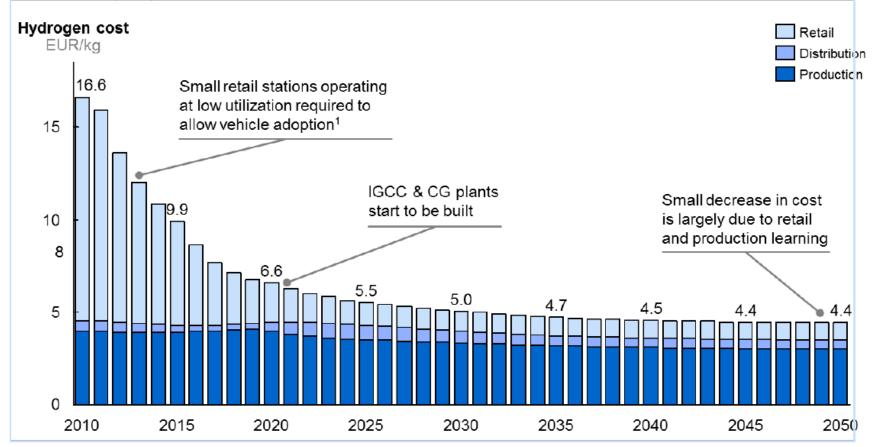
[FeFe] hydrogenase enzyme motif that catalyzes the formation of H_2 from H_2O

100,000 molecules of H₂ per second

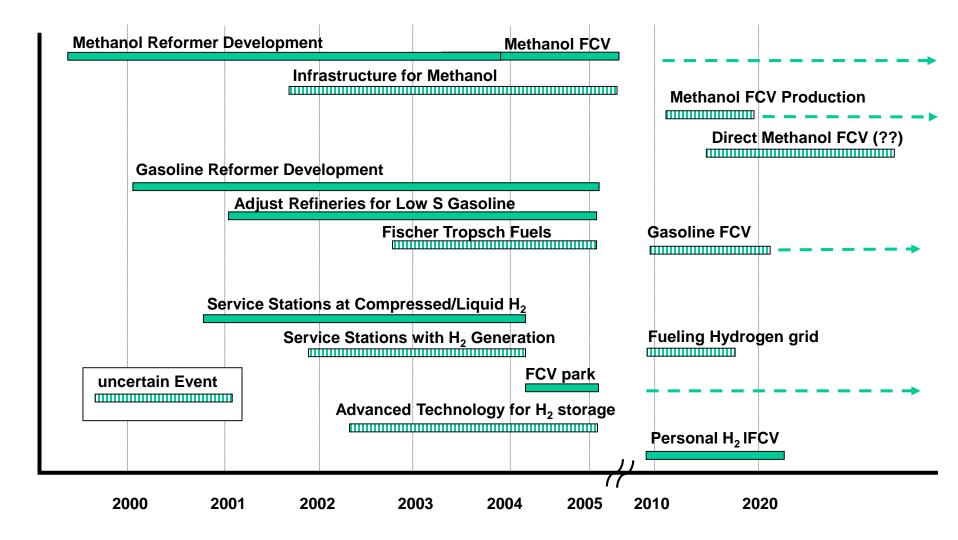
M L Helm et al. Science 2011; 333: 863-866


Synthetic mimic

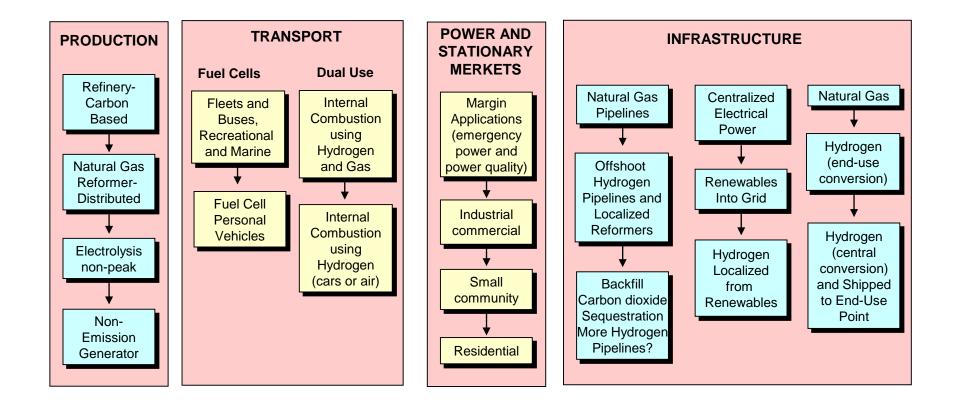
POLITECNICO DI MILANO


Attilio Citterio

DOE Timeline for development of key hydrogen energy systems (2012).


POLITECNICO DI MILANO

Delivered at pump, w/o taxes or excises



Source: A portfolio of power-trains for Europe (McKinsey 2011)

Possible Routes to FCV Commercialization.

POLITECNICO DI MILANO

Fuel Cell Type	Operating Temperature	Efficiency	Fuel
Metal-air "half cells"	Ambient	?	Zn, Al
Polymer Electrolyte	80 °C	40 – 45 %	H ₂
Direct Methanol	50 – 100 °C	30 – 40 %	МеОН
Phosphoric Acid	160 – 220 °C	40 – 45 %	H ₂
Alkaline	120 – 250 °C	60 %	H ₂
Molten Carbonate	600 – 650 °C	50 %	Syngas
Solid Oxide	700 –1000 °C	50 – 55 %	CH ₄ , syngas

Pros

- High efficiencies
- Good at part load
- Low emissions
- Good maintenance characteristics
- Few moving parts
- Low noise characteristics
- Distributed power generation can be used with cogeneration

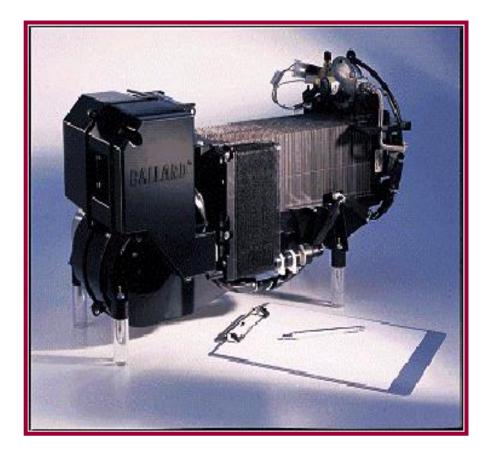
Cons

- Lifetimes unknown
- Loss of efficiency with time
- High investment costs
- Low development status
- Low availability
- Few technology providers
- Absence of fuel infrastructure for most applications

- ~ 80 100 °C Operation
- Applications:

Polymer Electrolyte Direct M Membrane Fuel Cells Cells

- Automobiles
- Buses
- Residential and small commercial distributed power generation
- Premium power
- Telecommunications


Direct Methanol Fuel Cells

- Automobiles
- Personal Transportation
- Cell Phones
- Lap Tops
- PDAs

Ballard NexaTM Power Module

- 1200W, 26V output at full power
- Backup or intermittent power
- CSA, UL certified

POLITECNICO DI MILANO

- ~ 200 °C Operation
- Applications:

Alkaline Fuel Cells	Phosphoric Acid Fuel Cells
 Space Power Personal Transportation Small Watercraft Utility Vehicles Fleet Vehicles 	 Baseload Power Cogeneration

UTC Fuel Cells PC25[™]

- 200 kW electrical
- 900,000 Btu/hr. thermal
- 37 % electrical efficiency
- 87 % overall efficiency
- Installation shown is operating on digester gas in Portland, Oregon

POLITECNICO DI MILANO

- ~ 600 1000 °C Operation
- Applications

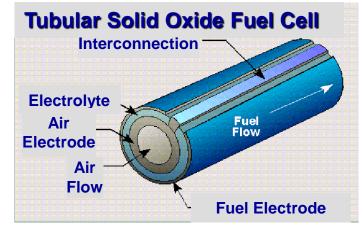
Molten Carbonate Fuel Cell

Baseload Power

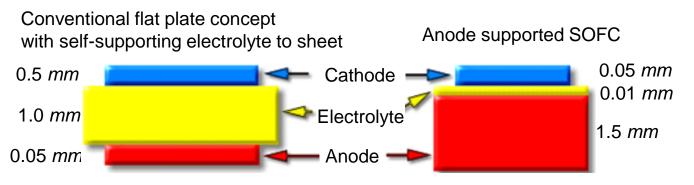
- Cogeneration
- Hybrid Power

Solid Oxide Fuel Cells

- Baseload Power
- Small-scale Distributed Power
- Cogeneration
- Hybrid Power
- Potential for Future Automotive
- use



Tubular SOFC


- Typical Siemens-Westinghouse design
- Suitable for large scale installations

Planar SOFC

- Anode supported design on right
- Lower temperature operation
- Suitable for smaller systems

Single Cell Structure

POLITECNICO DI MILANO

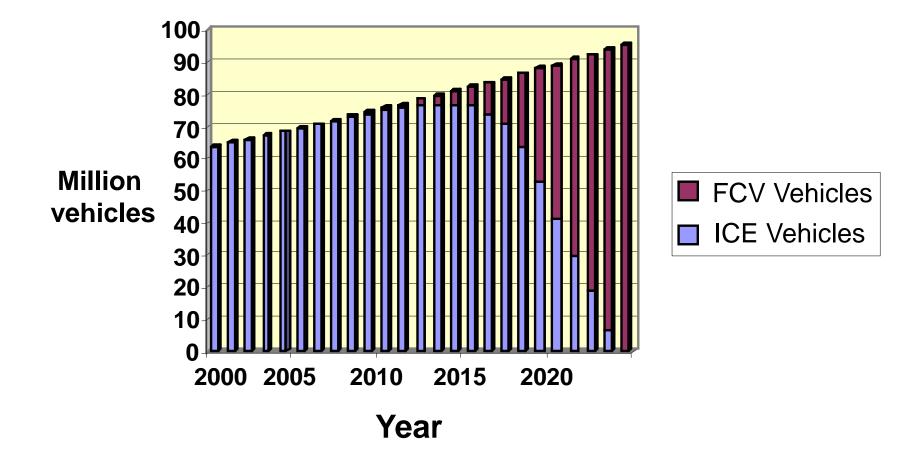
Siemens/Westinghouse

- 220 kW SOFC/turbine hybrid
- 200 kW tubular fuel cell stack
- 20 kW turbine
- 55 % electrical efficiency
- Over 900 hours operational experience
- Design targeted for eventual
 60 70 % electrical efficiency

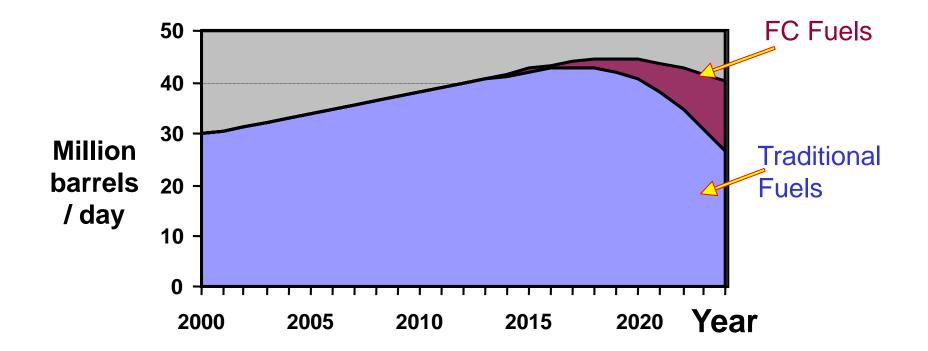
Applications

Zinc-air Fuel Cells

- Cars
- Hearing aids
- Cell Phones
- Lap Tops
- PDAs
- Portable Power
- Portable Electronics

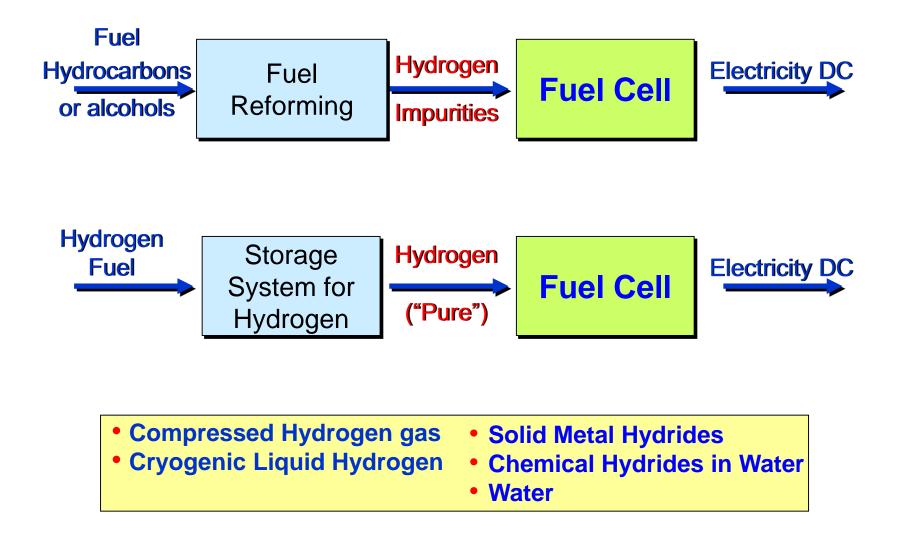

These technologies are challenging to the traditional concept of fuel cells as a part of the hydrogen economy.

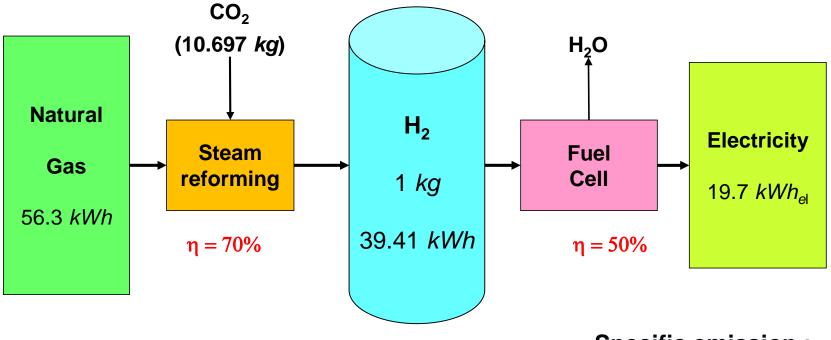
Aluminum-air Fuel Cells


Cars

Large-scale Transportation

(More Optimistic market penetration of FCV)

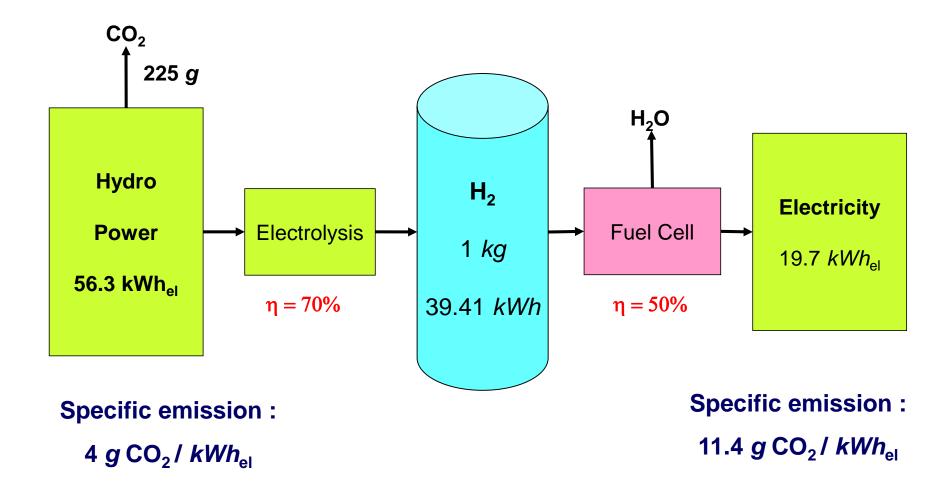


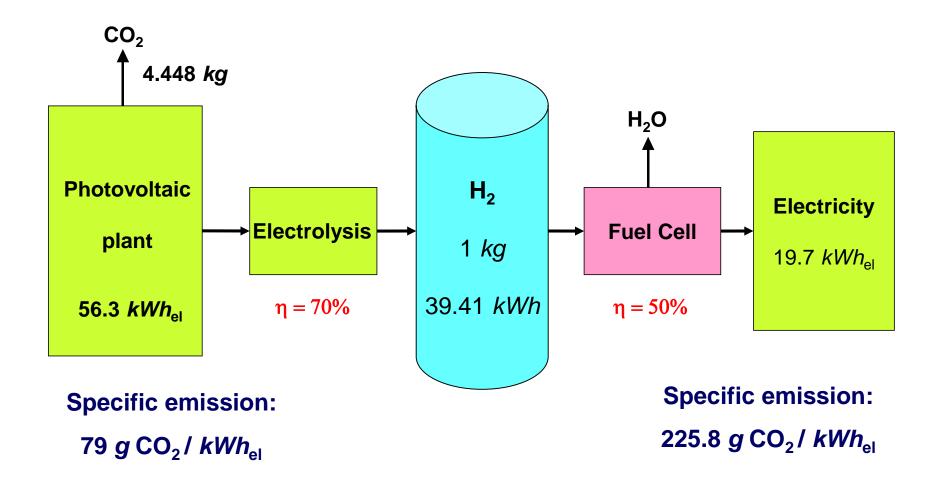


Assumption:

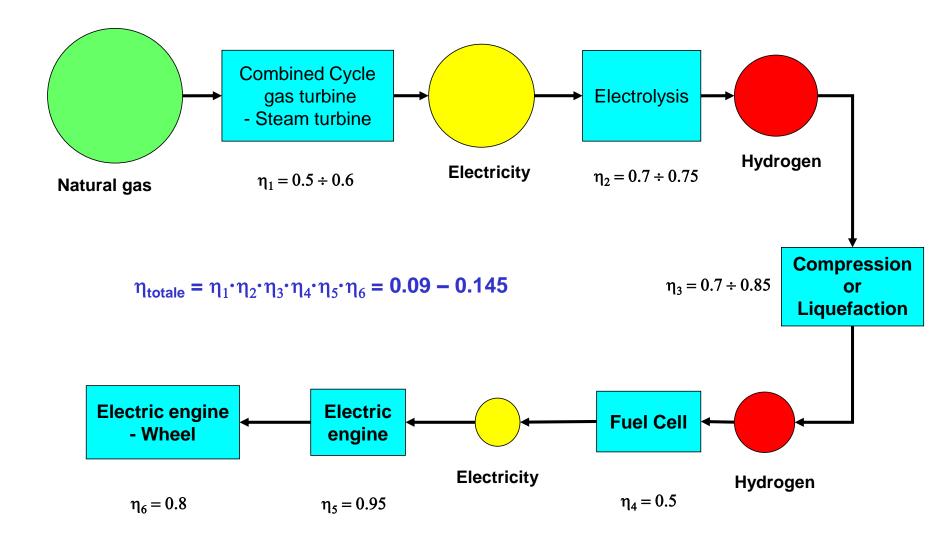
- 2.5% Growing of cars annual sales
 - Mean life of vehicles 12 years
 - All vehicles are FCV from 2024.

Two Types of H₂ Fuel Systems.

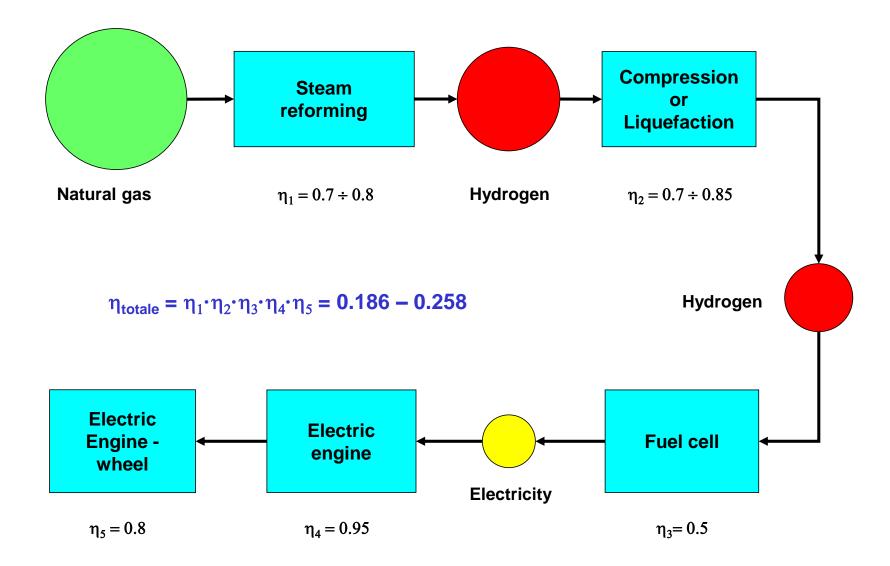


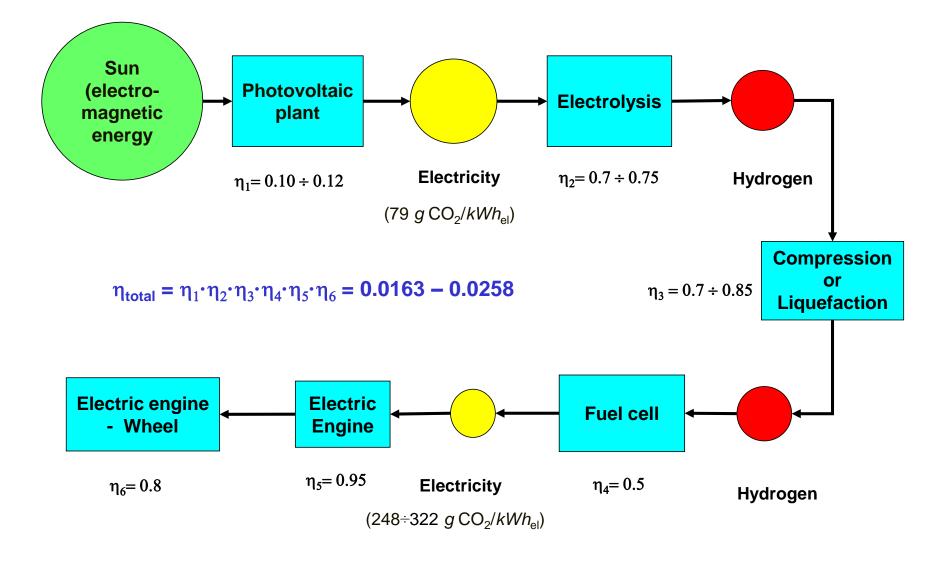

Specific emission :

543 g CO₂ / kWh_{el}


Water Electrolysis with Electric Energy.

Water Electrolysis with Photovoltaic Electricity.

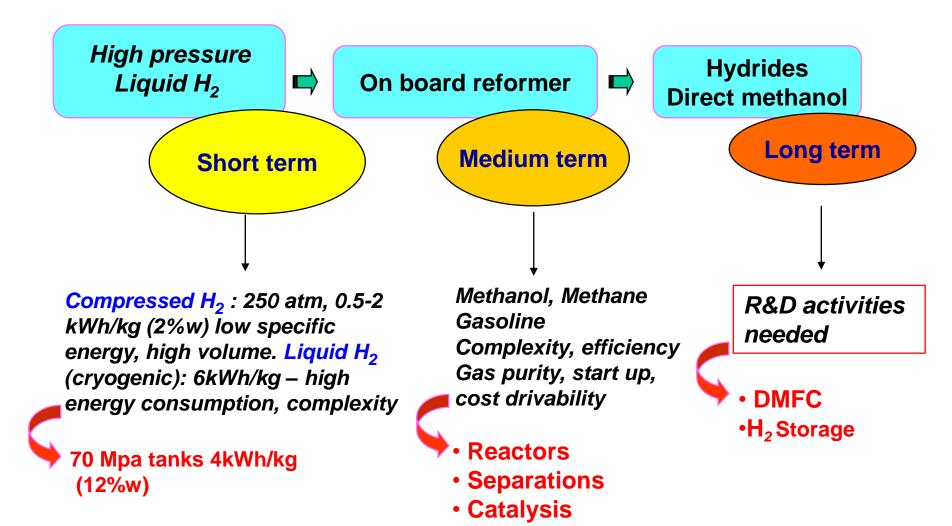




POLITECNICO DI MILANO

From Solar Energy to Wheel.

Specific Emissions and Sustainability: Electric Energy Production.


Emissions and sustainability Technology	Specific Emission [gCO ₂ /kWh _{el}]	Sustainable development		
		ecological aspect	economic aspect	social aspect
 COAL combustion, Carnot cycle (η = 40%) reforming, compressed H₂, fuel cell combustion, electrolysis, compressed H₂, fuel cell 	826 1100 2200	 	+++ + -	- - -
METHANE - combustion, combined cycle - reforming, compressed H ₂ , fuel cell - combustion, electrolysis, compressed H ₂ , fuel cell	317 633 760	- 	+ + + + -	+ + +
 HYDRO POWER Electricity Production Electrolysis, compressed H₂, fuel cell 	4 13	+ + + + + + +	+++ +	+ + +
 NUCLEAR ENERGY Electricity Production Electrolysis, compressed H₂, fuel cell 	8 27	+ + +	+++ +	+ +
 PHOTOVOLTAIC ENERGY Electricity Production Electrolysis, compressed H₂, fuel cell 	79 263	+ + + -		+ + +
 EOLIC ENERGY Electricity Production Electrolysis, compressed H₂, fuel cell 	36 120	+ + +		+ + +

Attilio Citterio

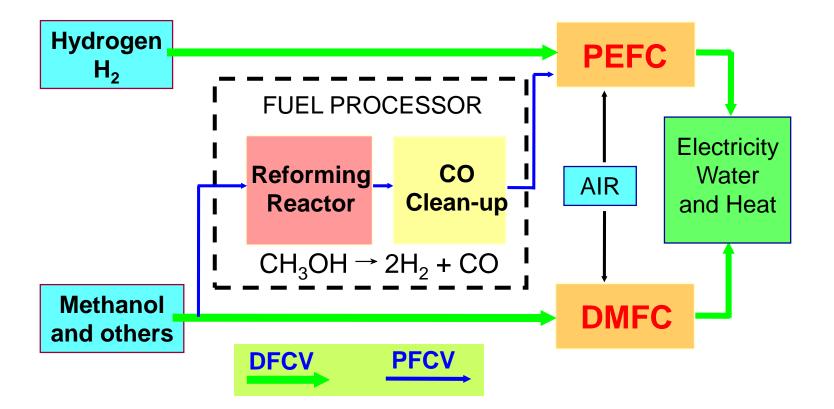
On-Board Hydrogen Storage Challenge.

- The low volumetric density of gaseous fuels requires a storage method which densifies the fuel.
 - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels
 - $3 MJ/L (5000 psi H_2), 8 MJ/L (LH_2) vs. 32 MJ/L (gasoline)$
- Storing enough hydrogen on vehicles to achieve greater than 300 miles driving range is difficult.
- Storage system adds an additional weight and volume above that of the fuel.

How do we achieve adequate stored energy in an efficient, safe and cost-effective system?

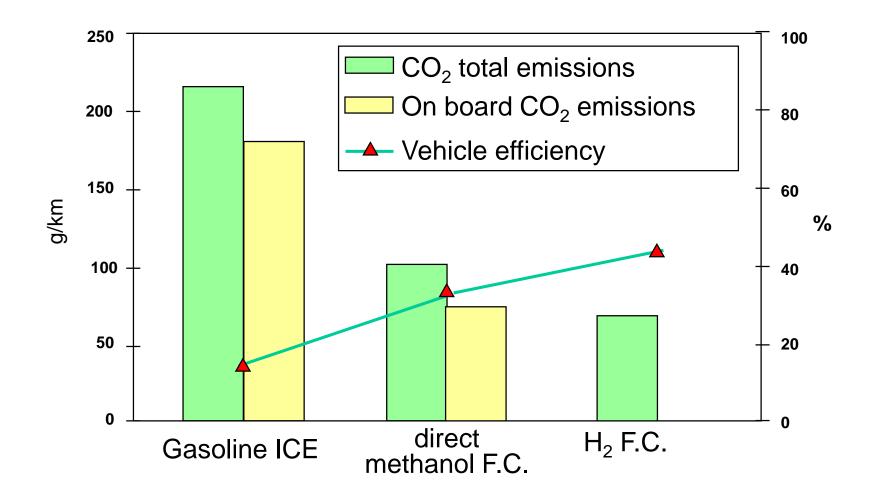
Direct Methanol FCV

- Liquid fuel
- Easy handling
- Toxic
- Cost = 2 x gasoline


Direct Hydrogen FCV

Best FC efficiency

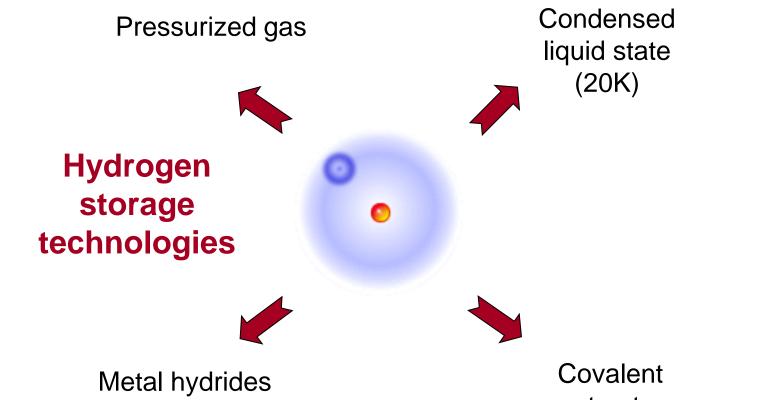
- Dangerous to handle
- Zero Emissions
- Cost = 6 × gasoline
- Specific energy/vol = 0.5 (gasoline = 1)


DMFC: slow kinetics, Fuel crossover Safe storage systems (hydrides, C nanotubes..) Clean and efficient Hydrogen production

DFCV = Direct Fuel Cell Vehicle PFCV = Processed Fuel Cell Vehicle

Attilio Citterio

G. Cacciola et al. J. of Power Sources 100, 67 (2001)


Attilio Citterio

POLITECNICO DI MILANO

Hydrogen Storage Technical Barriers: General.

- Weight and Volume. The weight and volume of hydrogen on-board storage systems are presently too high, resulting in inadequate vehicle range compared to conventional petroleum fueled vehicles.
- **Efficiency.** Energy efficiency is a challenge for all hydrogen storage approaches.
- **Durability**. Durability of hydrogen storage systems is inadequate. Materials and components are needed that allow hydrogen storage systems with a lifetime of 1500 cycles
- **Refueling Time**. Refueling times are too long.
- **Safety, Codes & Standards**. Standardized hardware and operating procedures, applicable codes and standards, and ensuring that storage systems meet safety requirements and crash-worthiness, are required
- Life Cycle, Environmental Impact, and Efficiency Analyses. There is a lack of analyses of the full life-cycle cost, environmental impact, and efficiency for hydrogen storage systems.
- **Cost**. The cost of hydrogen storage system is too high.

(irreversible decomposition with water or chemo-adsorption at high temperature)

nanostructures (physic-adsorption at low temperature)

POLITECNICO DI MILANO

Attilio Citterio

100 kg fuel tank – range 500 km

Hydrogen capacity: 5 kg

 $(DOE 6.5\% \text{ wH}_2)$

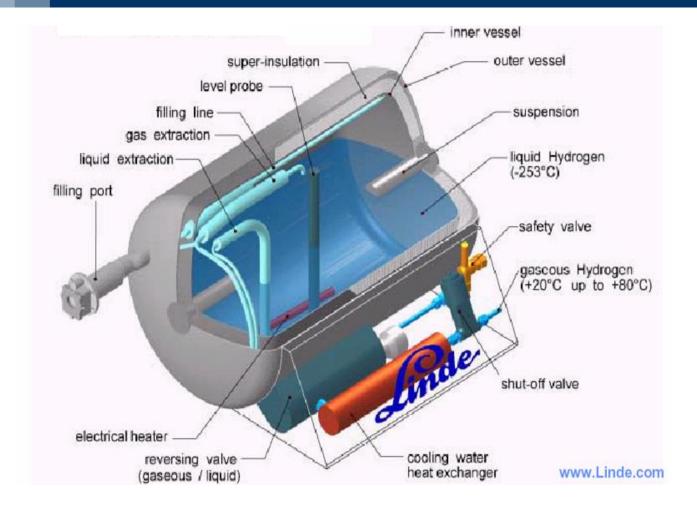
Peak consumption: ~1-3 g/s

(DOE 1.8% wH₂/*h*)

Reversibility: > 1000cycles

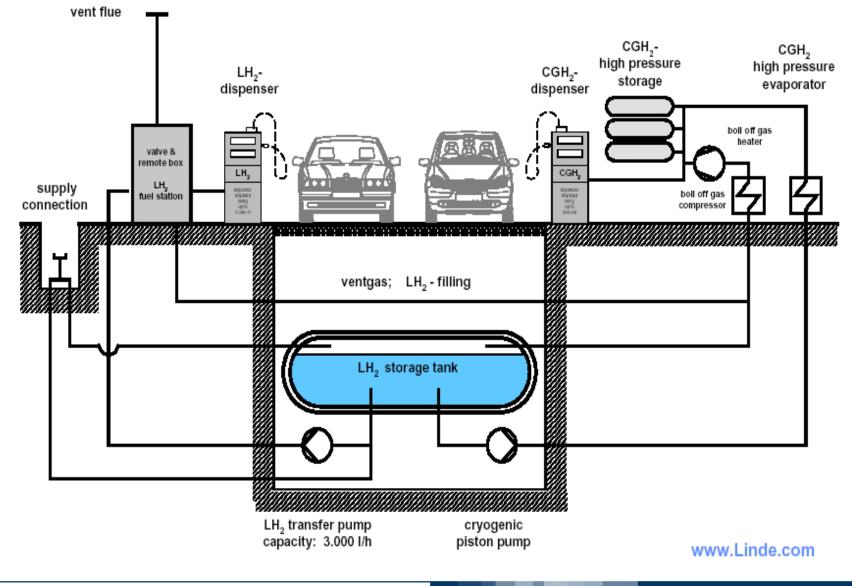
(DOE at least 5000 cycles)

Density:


(DOE 62 kg H_2/m^3)

Cost ?

Wide Range of Hydrogen Storage Materials.


- metal hydrides
- complex hydrides
- chemical hydrides
- Carbohydrates
- Clathrates
- inorganic nanotutes
- organic materials
- MOFs
- carbon materials
- Liquid density 70.8 kg/m^{3 at} NTP.

Liquid Hydrogen Storage Tank.

- Liquefying H₂ requires substantial energy
- Boil-off is an issue for non-pressurized insulated tanks

Refueling System with Liquid H₂.

Attilio Citterio

POLITECNICO DI MILANO

Hydrogen Storage with Hydrides (Physisorption Methods).

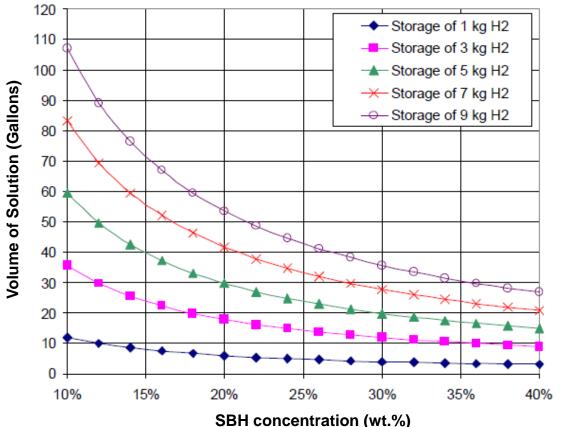
on board reversible hydrides

(interstitial, covalent metal hydrides, amides and borohydrides

off board regenerable hydrides

(hydrocarbons, ammonia borane, alane)

- The highest 99.5 mg/g at 56 bar and 77 K and 164 mg/g at 77K 70 bar (176 mg /g highest reported so far).
- symbolic many metal framework of Zn(II), Cu(II) Mn(III), Cr(III), La(III).


Materials with High Formula Weight for Hydrogen.

Formula	Formula wt.% Hydrogen	
CH ₄	25	
H ₃ BNH ₃	19.5	
LiBH ₄	18.3	
(CH ₃) ₄ NBH ₄	18	
NH ₃	17.7	
AI(BH ₄) ₃	16.8	
Mg(BH ₄) ₂	14.8	
LiH	12.6	
CH ₃ OH	12.5	
H ₂ O	11.2	
LiAIH ₄	10.6	
NaBH ₄	10.6	
AIH ₃	10.0	
MgH ₂	7.6	
NaAlH ₄	7.4	

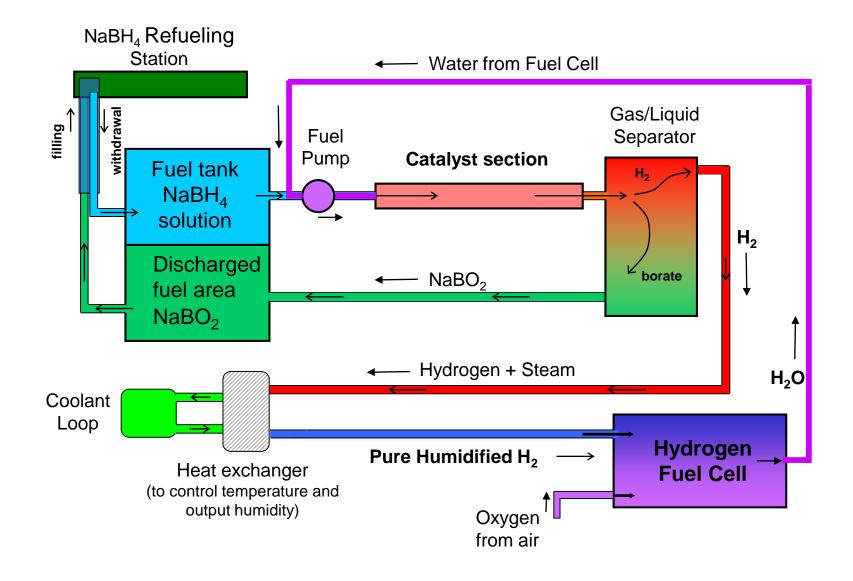
- Exothermic and irreversible reaction: dehydrogenation kinetics are fast.
- The starting solution is liquid at room temperature and pressure.
- Hydrogen capacity is high at around 10% hydrogen (100% purity with 100% relative humidity, no CO, S present).
- Sodium borate solution is "ecologically acceptable" but regeneration costs are a major issue.

Volumetric storage efficiency of 30 wt.% fuel = \sim 63 g H₂/L

For comparison:

Liquid $H_2 = -71 \text{ g } H_2/L$

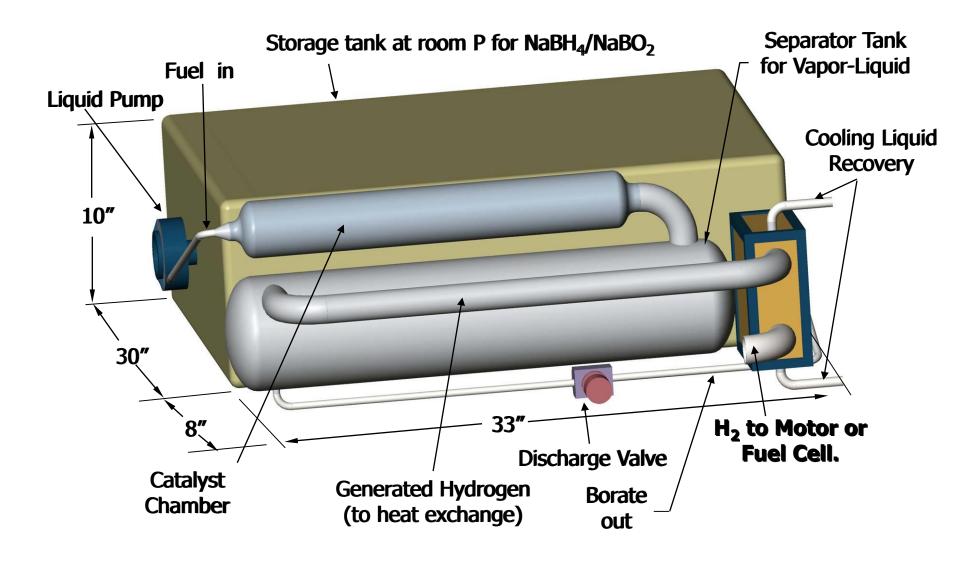
5,000 psi compressed =

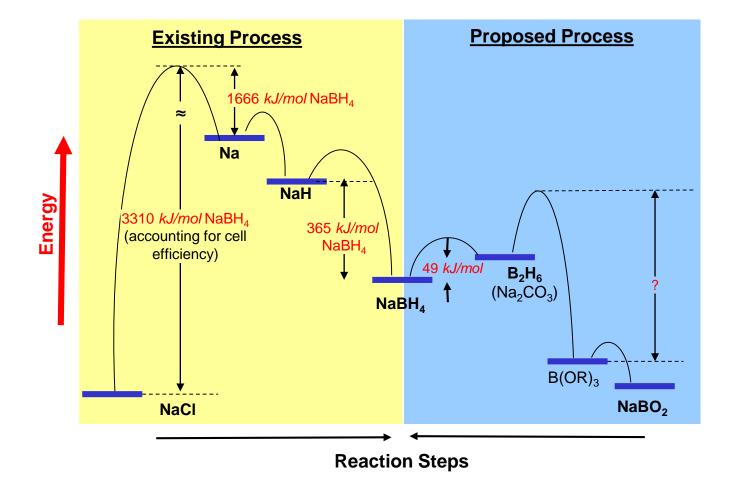

 \sim 23 g H₂/L

10,000 psi compressed =

 \sim 39 g H₂/L

For a practical system, Balance of Plant is key.


Chemical Hydride Fuel Cycle.


POLITECNICO DI MILANO

Attilio Citterio

Hydrogen Generation System from NaBH₄.

Can B_2H_6 be better than NaH as an Intermediate?

- Production of Na is < 50% energy efficient
- Further energy losses to convert Na to NaBH₄
- Utilize alternative intermediate B₂H₆.
- Need appropriate energy input to efficiently produce B₂H₆.

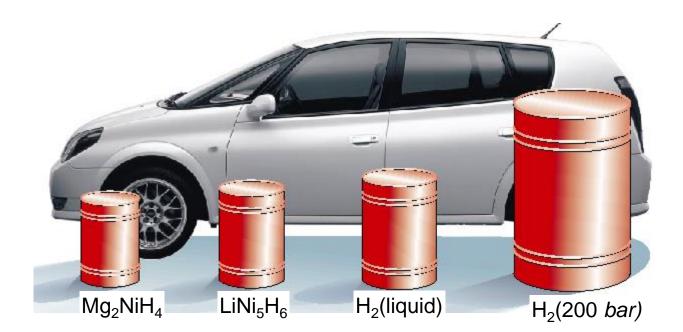
Cost Reduction of Borohydride.

- Now, NaBH₄ is available, but is expensive
 - Product mainly used for the synthesis of specialty chemicals
 - Available at about € 63/kg of H₂
 - Manufactured at a scale not sufficient per energetic uses
- New process technology could make the compound competitive with gasoline if:
 - Big plants of 2,500 tons NaBH₄/day
 - Serve 900,000 vehicles with fuel cells
 - Produce fuel equivalent to € 2.34/kg H₂
 - Total installed costs below 200 million €

Hydrides*

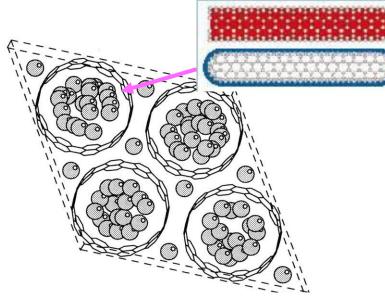
- *AB*₅
- *AB*₂
- *AB*
- A_2B
- Complex compounds
- Mg Alloys
- Mix. other Intermetallic compounds
- <u>Solid Solution Alloys</u>

Carbon Nanostructure

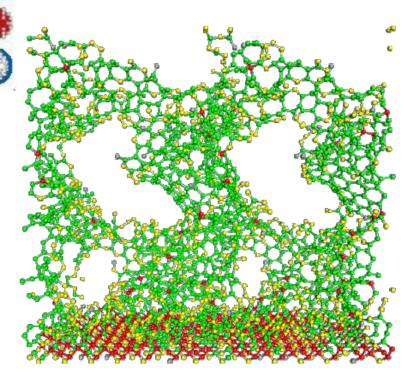

- graphite nanofibers
- fullerenes
- <u>nanotubes</u>
- activated carbons

Challenging scientific research Need for a breakthrough Still at research level.

* http://146.246.239.9:591/AB5List.html

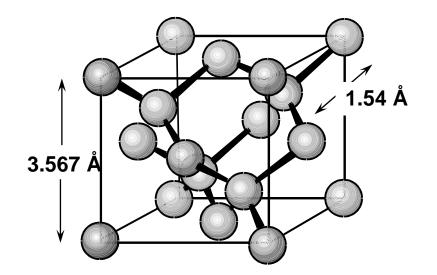

Attilio Citterio

Volume Comparison for4 Kg Vehicular Hydrogen Storage.



Volume of 4 kg of H_2 compacted in different ways, with relative size to the size of a car. At ambient PT, H_2 displays a volume of 45 m³, equivalent to a ball with 5 m of diameter — unpractical.

Carbon Nanostructures.



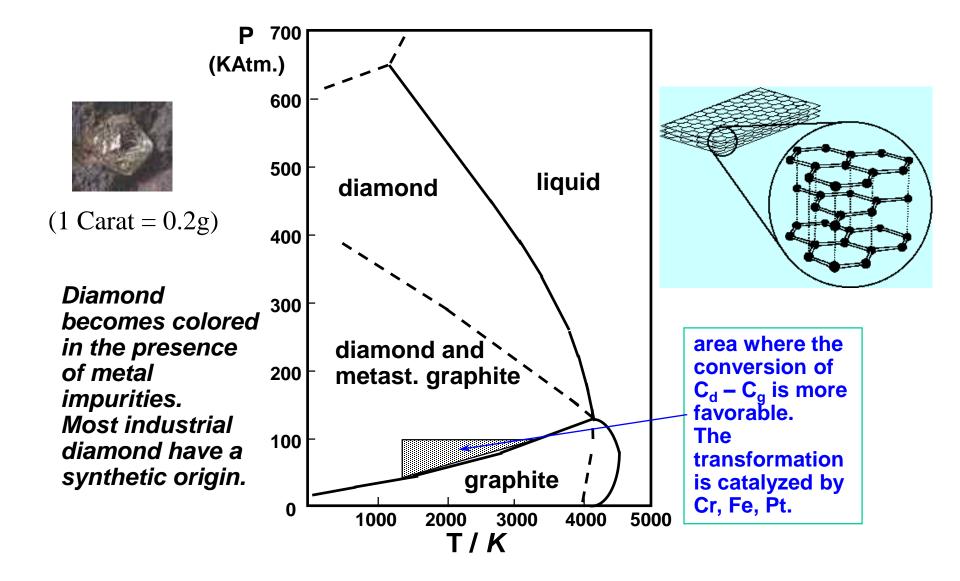
Typical arrangement of H₂ molecules adsorbed on triangularly packed carbon nanotubes.

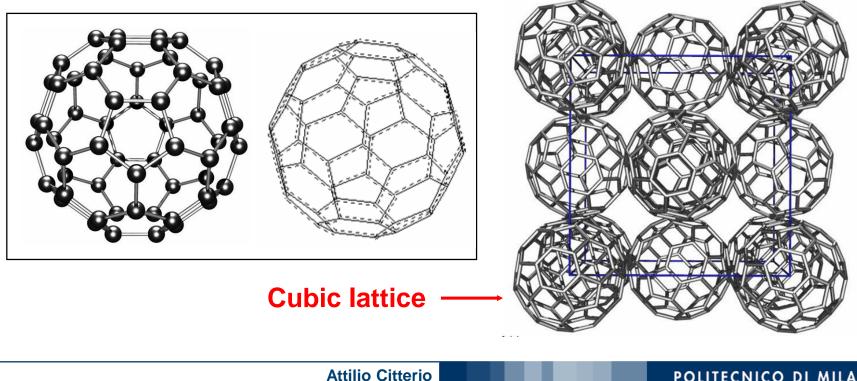
- Reversibly stored H is physic-adsorbed upon C-graphitic structures.
- Chemisorption can occur upon defects or included metallic particles.


Allotropic Forms of Carbon.

Diamond (ΔH°	_f = 1.90 <i>kJ</i> ⋅ <i>mol</i> ⁻¹)
-------------------------------------	--

density/g·cm ⁻¹	3.5
hardness	10
m.p. /°C	4100


sp³ hybridized C (angle 109°)
hard, insulating, transparent


sp² hybridized C (angle 120°) soft, conductor, metallic/black

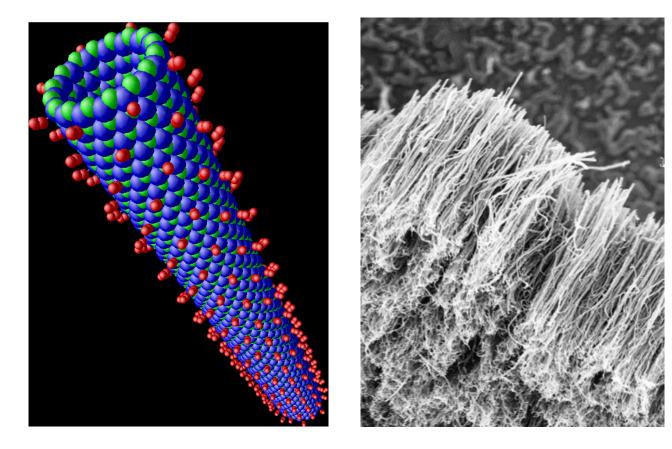
[Available also the β -rhombohedral form] ABCABC

Phase Diagram of Carbon.

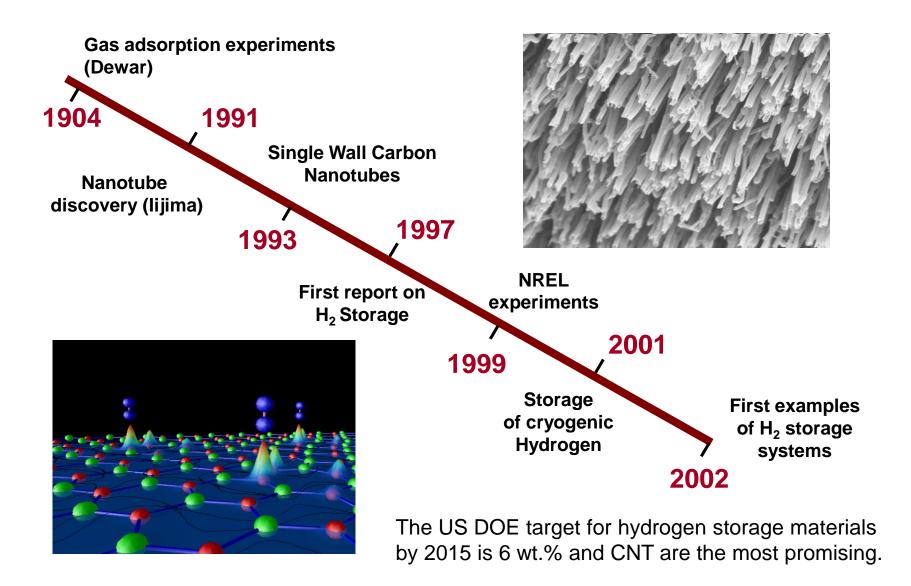
A fullerene is any cyclic molecule composed entirely of carbon, in the form of a hollow sphere, ellipsoid, or tube. Spherical fullerenes are also called buckyballs, cylindrical ones are called carbon nanotubes or buckytubes. Fullerenes are similar in structure to graphite, which is composed of stacked graphene sheets of linked hexagonal rings; but they may also contain pentagonal (or sometimes heptagonal) rings. Can be obtained by graphite by arc pyrolysis. They are less stable than graphite. Fullerenes have found extensive applications.

Preparation: Depolymerization of C (\Rightarrow C₂, C₃, C₄, ...):

Via electric arc with Graphite electrodes at 100 *mbar* under He, Ar: Fullerene + other materials: extraction with C_6H_6 , CCI_4 , and chromatographic separation

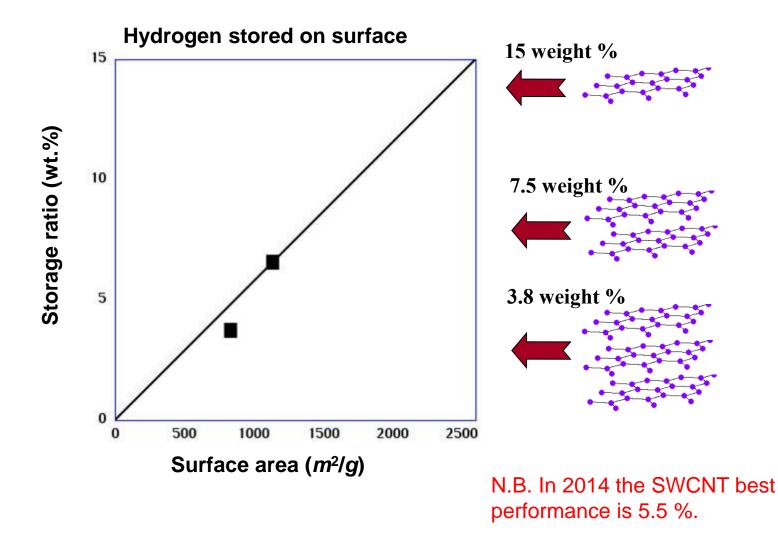

Properties: Yellow-brown to dark-brown crystals, stable to air and H₂O, Sublime under vacuum at 300°C. Insoluble in H₂O, soluble in C₆H₆, C₆H₁₂, CCl₄, CS₂ (C₆₀: 5 *g/L* C₆H₆) Conductibility: no metallic conductibility – different from Graphite) Isolated: C₆₀, C₇₀, C₇₆, C₇₈ (2 Isomers: C_{2v} o D₃ symmetry), C₈₄ as in Graphite 3 *sp*² localized and 1 bond π delocalized: Slowly converted into graphite: C₆₀ (s) {1500°C} \rightarrow C_{Graphite} (stable) (Δ G < 0)

Reactions:

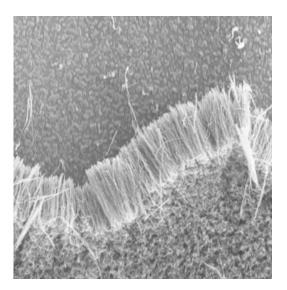

 $\begin{array}{l}C_{60}+F_2 \rightarrow C_{60}F_6 \text{ (brown)} \rightarrow C_{60}F_{42} \text{ (brown)} \rightarrow C_{60}F_{60} \text{ (colorless)}\\C_{60}+H_2 \text{ (native)} \rightarrow C_{60}H_{36} \text{ (colorless)}; C_{60}+Br_2 \rightarrow C_{60}Br_{24}\text{-}2Br_2\end{array}$

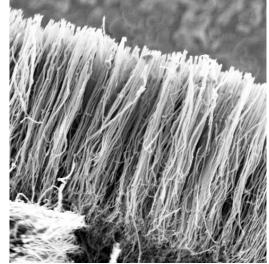
Approach to non Covalent Storage of H₂ by Carbon Nanotubes.

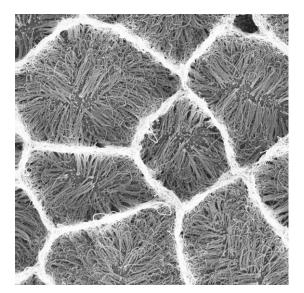
- Synthesis of materials with bond energy and nanostructures designed to storage and release significant amount of hydrogen.
- Selection of appropriate prototypes for storage systems.



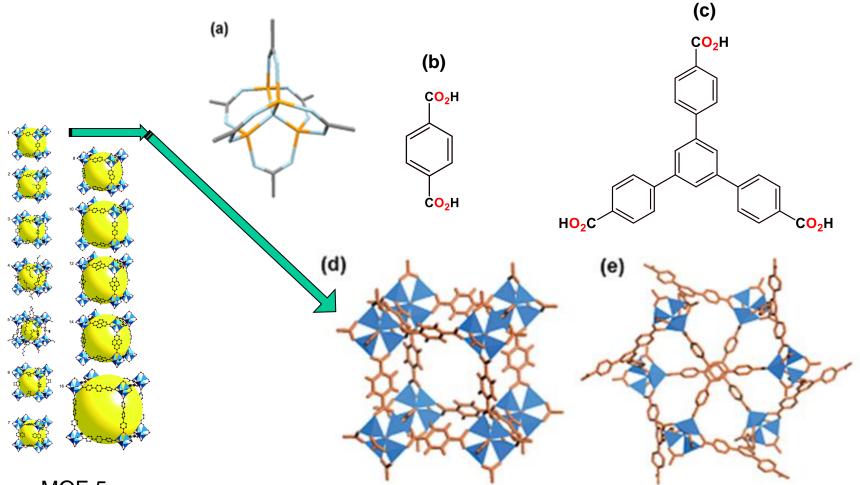
Attilio Citterio


Storage Capacity vs. Material Quality.

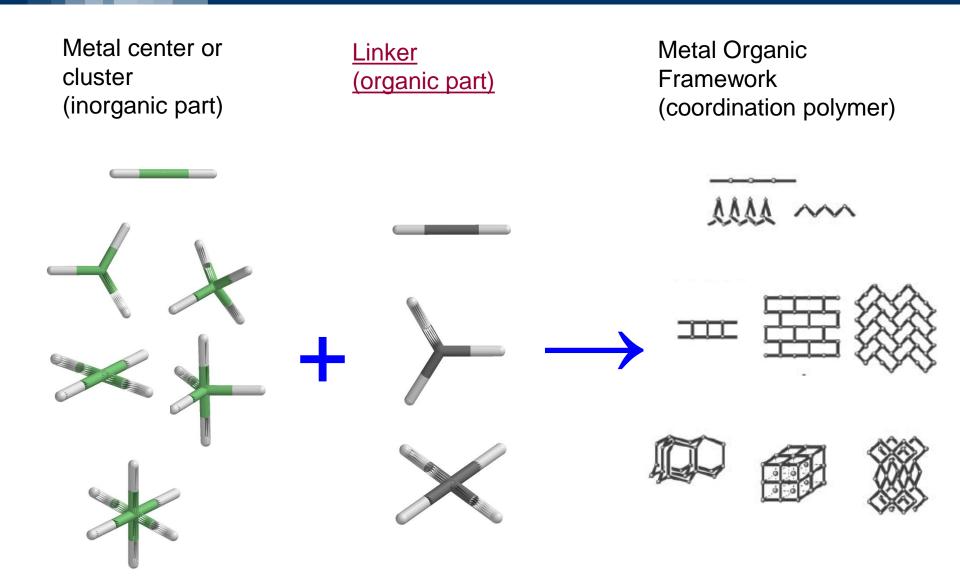



POLITECNICO DI MILANO

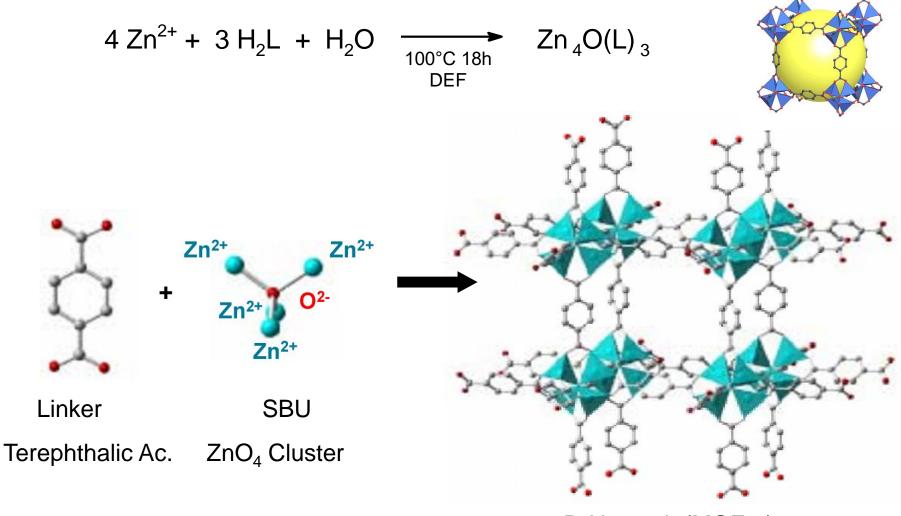
Attilio Citterio



Attilio Citterio

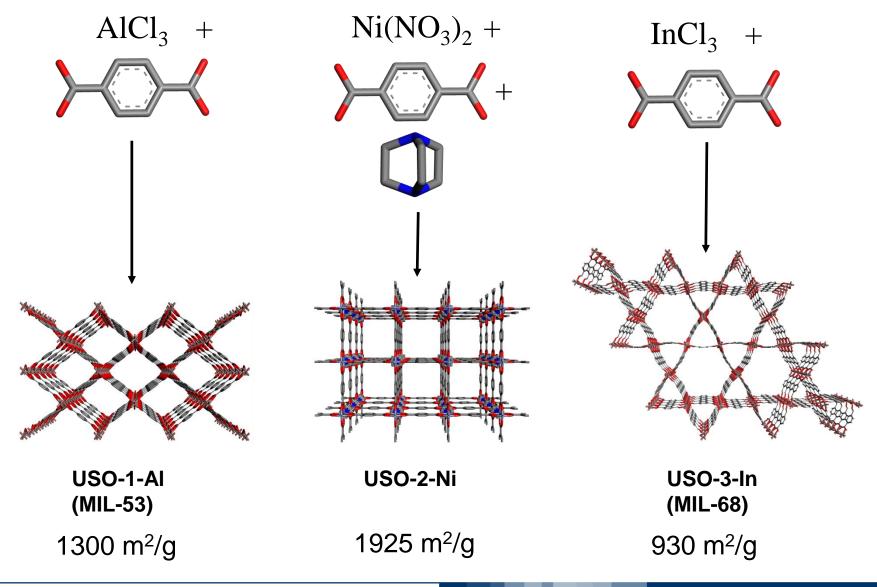

Metal Organic Frameworks (MOF) for Hydrogen Storage.

MOF-5


(a) $[Zn_4O]SBU$. The carboxylic acids used in the synthesis of (b) MOF-5 and (c) MOF-177. The structure of (b) MOF-5 and (c) MOF-177.

MOF basics: MOF= Metal Organic Frameworks; organic-inorganic hybrid materials.

Attilio Citterio

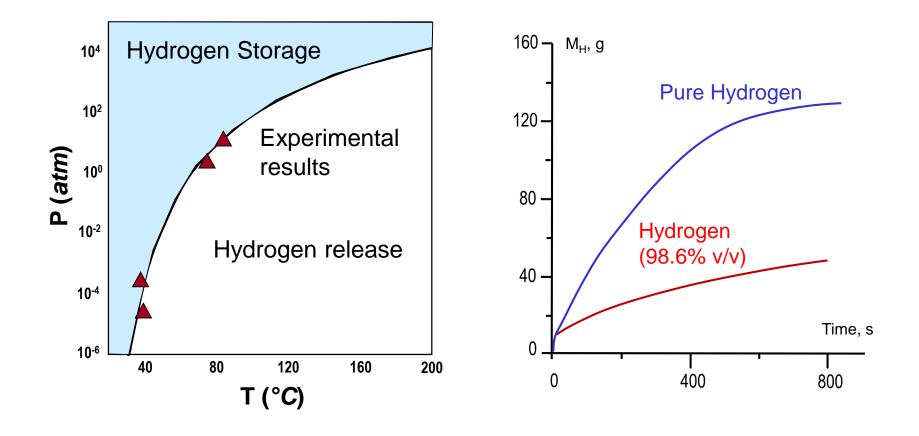


3D-Network (MOF-5)

POLITECNICO DI MILANO

Attilio Citterio

MOFs Examples.


Attilio Citterio

Sample	amount of Pd NPs, wt. %	Condition	H ₂ uptake amount, wt.%
PdNPs@SNU-3	0	77 K, 1 bar (298 K, 95 bar)	1.03 (0.13)
	1.70/5 min ^a	77 K, 1 bar	0.35
	2.60/10 min ^a	77 K, 1 bar	0.20
	2.94/30 min ^a	77 K, 1 bar (298 K, 95 bar)	1.48 (0.3)
	3.20/60 min ^a	77 K, 1 bar	1.10
MIL-100 (AI)	0	77 K, 4 MPa (298 K, 4 MPa)	3.1 (0.19)
MIL-100 (AI)/Pd	9.7	77 K, 4 MPa (298 K, 4 MPa)	1.3 (0.35)

^aIn the MeCN solution of 1.0 × 10⁻³ M Pd(NO₃)₂·2H₂O with a 1:1 mol ratio of Pd^{II}/MOF.

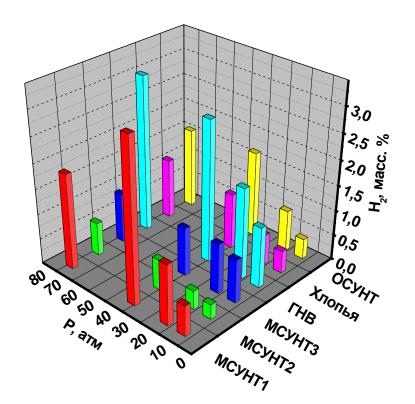
H₂ Storage: Thermodynamic and Kinetic.

Hydrogen absorption follows van't Hoff equation, but non-absorbable impurities dramatically decrease efficiency of hydrogen systems affecting kinetics, heat and mass transfer, refueling time and energy conversion efficiency in fuel cells.

Attilio Citterio

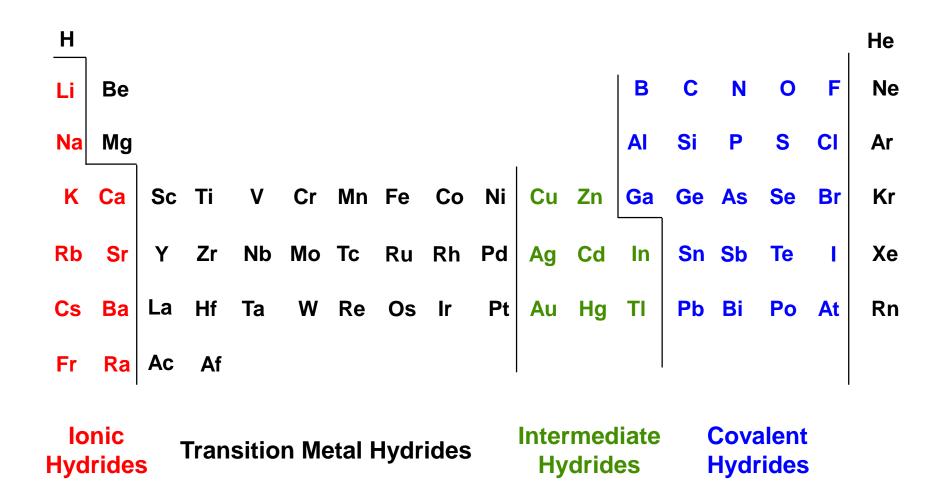
Hydrides of Elements.

1	2											13	14	15	16	17	18
н																	He
2.20		Allred-Rochow Electronegativity Ref: Huheey, J.E. Inorganic Chemistry ; Harper & Row: New York, 1983															
LiH	BeH ₂	Ionic hydrides BH ₃ CH ₄ NH ₃ H ₂ 0 HF												Ne			
0.97	1.47		Cav	alent poly	meric hy	drides						2.01	2.50	3.07	3.50	4.10	
NaH	MgH ₂			alent hydr allic hydri								AIH ₃	SiH4	PH ₃	H ₂ S	HCI	Ar
1.01	1.23	3	3 4 5 6 7 8 9 10 11 12								12	1.47	1.74	2.06	2.44	2.83	
кн	CaH ₂	ScH ₂	TiH ₂	VH VH2	CrH (CrH ₂)	Mn	Fe	Co	NiHet	CuH	ZnH ₂	(GaH ₃)	GeH₄	AsH ₃	H ₂ Se	HBr	Kr
0.91	1.04	1.20	1.32	1.45	1.56	1.60	1.64	1.70	1.75	1.75	1.66	1.82	2.02	2.20	2.48	2.74	
RbH	SrH ₂	YH ₂ YH ₃	ZrH ₂	(NbH ₂)	Мо	Tc	Ru	Rh	PdH _{st}	Ag	(CdH ₂)	(InH ₃)	SnH₄	SbH3	H₂Tc	HI	Xe
0.89	0.99	1.11	1.22	1.23	1.30	1.36	1.42	1.45	1.35	1.42	1.46	1.49	1.72	1.82	2.01	2.21	
CsH	BaH ₂	LaH ₂ LaH ₃	HfH ₂	ТаН	w	Re	Os	lr	Pt	(AuH ₃)	(HgH ₂)	(TIH ₃)	РЪН₄	BiH3	H₂Po	HAt	Rn
0.86	0.97	1.08	1.23	1.33	1.40	1.46	1.52	1.55	1.44	1.42	1.44	1.44	1.55	1.67	1.76	1.90	
Fr	Ra	AcH ₂															
		1.00															
		1.00															


CeH ₃	PrH ₂ PrH ₃	NdH ₂ NdH ₃	Pm	SmH ₂ SmH ₃		GdH ₂ GdH ₃		DyH ₂ DyH ₃			TmH ₂ TmH ₃	(YbH ₂) YbH ₃	LuH ₂ LuH ₃
1.08	1.07	1.07		1.07	1.01	1.11	1.10	1.10	1.10	1.11	1.11	1.06	1.14
ThH ₂	PaH ₂	UH	NpH ₂ NpH ₃		AmH ₂ AmH ₃	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1.11	1.14	1.22	1.22	1.22	1.2								

Reversible Solid-State Material Storage Systems.

Hydrogen Capacity and Reversibility.

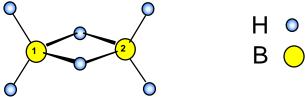

Hydrogen capacity and reversibility are inadequate at practical operating temperatures and pressures and within refueling time constraints. Adequate cycle life of these systems has not been demonstrated.

Maximum values of 3.3 % were reported for graphene sheets at R.T. and of 6.7% at 50 bar (1% Pd) and 7.1 at 60 bar (5% Pd).

Reversible capacity of carbon nanostructures (nanotubes, nanofibers, nanoflakes) at 20°C.

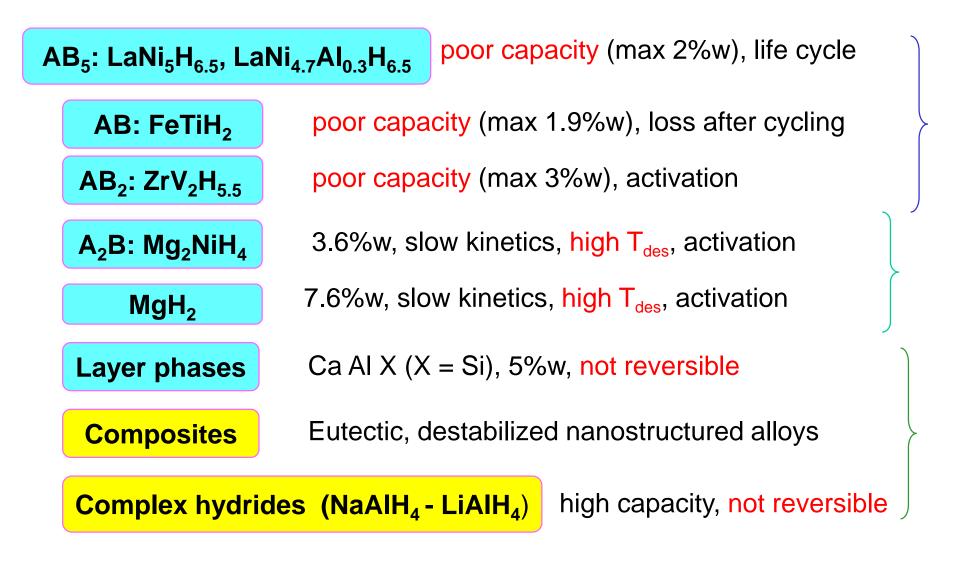
Binary Hydrides of Elements.

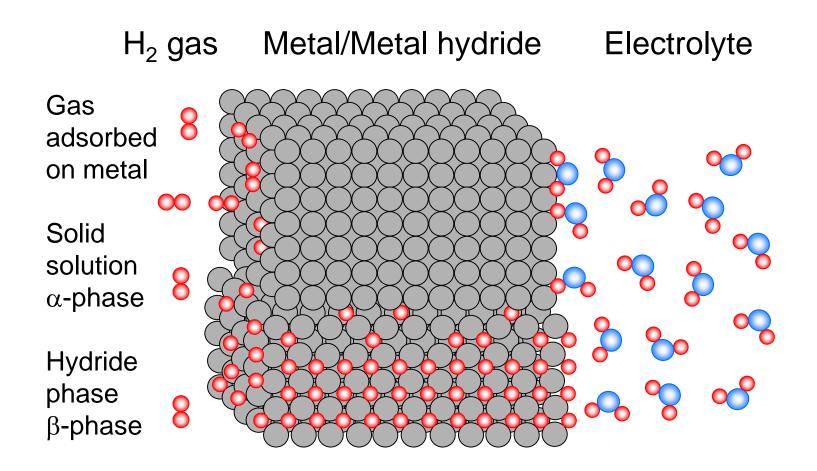
Ionic Hydrides: Preparation and Properties.


- Prepared from elements at 300-700°C; if metal is finely dispersed can react at lower temperature;
- Crystalline solids with limited thermal stability (to reach 10 mmHg need 550°C for LiH, 210°C for NaH and KH, 170°C for Rb-H, 885°C for CaH₂, 585°C for SrH₂, 230 for BaH₂, and 85°C for MgH₂);
- Dissolve in fused alkaline salts;
- Being strong reducing species [E°(H₂/H⁻) = 2.25 V], they react efficiently with water generating hydrogen and absorb easily oxygen in very exothermic reactions;
- Only LiH can be melted without decomposition; this compound shows moreover low sensitivity for oxygen, chlorine and HCl at R.T.;
- MgH₂ reacts with water slowly enough to allow the use as dehydrating agent for solvents and gaseous species;
- They are used to prepare complex hydrides (NaBH₄ and LiAIH₄).

 Aluminum forms the solid AlH₃ which exists in at least six different solid phases; the compound is useful and selective reducing agent in organic chemistry; it behaves as a Lewis acid reacting with LiH to give complex anions (tetrahydroaluminate):

$$LiH + AIH_3 \rightarrow LiAIH_4$$


Boron affords a quite complex series oh hydrides starting from diborane (B₂H₆), all having three center two electron bonds (banana bonds)


 IV-V group hydrides are covalent, volatile, molecular, not very reducing compounds (in particular hydrocarbons C_nH_{2n+1}), soluble in apolar solvents, and having complex chemistry.

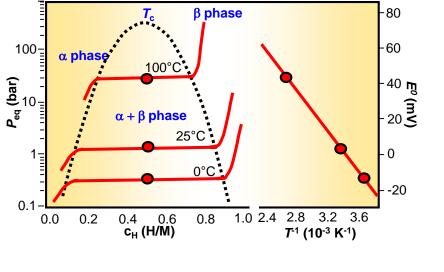
Transition Metal Hydrides.

- Compounds with non ionic structure, existing frequently in several different phases with a quite variable stoichiometry;
- Show a typical band structure of not covalent solids, which determine their properties and behavior;
- Block "d" hydrides are relatively unstable, they are grey-black solids very similar in reactivity to the corresponding metals. Are generally stable to air, but react on heating with air or acids. Ti, Zr, and Hf react exothermically with hydrogen giving non stoichiometric hydrides (i.e. TiH_{1.7}). Pd, Pt, and Ni hydrides are quite stables and are frequently used in catalysis;
- block "f" hydrides (lanthanides and actinides) are easily formed; they are black non stoichiometric solids with ionic structure. Uranium forms an UH₃ hydride, reactive and relevant intermediate for enrichment of ²³⁵U.

Metal with Interstitial Hydrogen and Hydride Phases used in Fuel Cells.

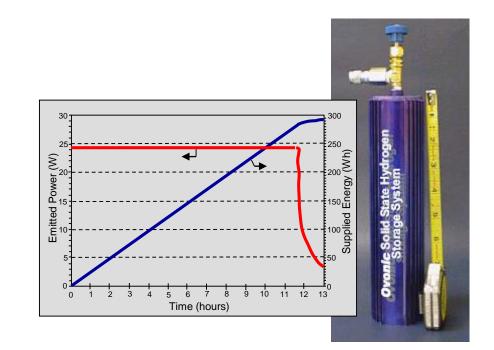
Hydrides: Basic Properties (1).

Two main issues :

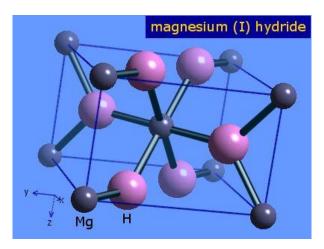

 Thermodynamic stability of Hydride - strictly dependent upon M-H bonding properties

$$\ln p = \frac{\Delta H}{RT} - \frac{\Delta S}{R} \qquad \text{Van't Hoff} \\ \text{Equation}$$

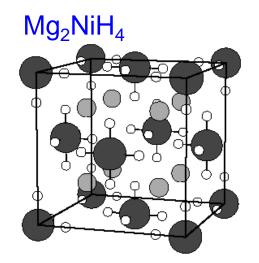
 $\Delta \mathsf{S} = \mathsf{130} \; J \cdot K^{\text{-1}} \cdot mol^{\text{-1}}$


• Kinetics: First order Arrhenius-like $K = A \cdot e^{-E/KT}$

A,E dependent upon a number of surface and structural parameters

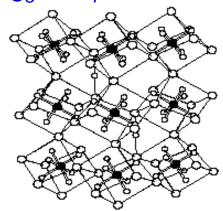


- High Power –1000
 W·*kg*⁻¹ (HEV)
- High Energy Density–
 80 Wh·kg⁻¹ (EV)
- Excellent Life Cycle >50,000 PNGV Cycles 100 Wh

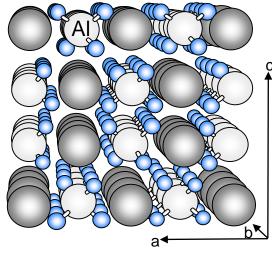


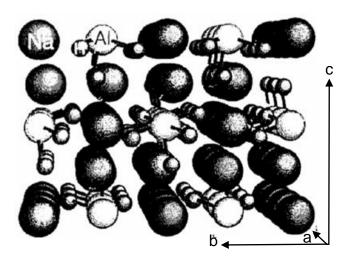
Hydrides: Basic Properties (2).

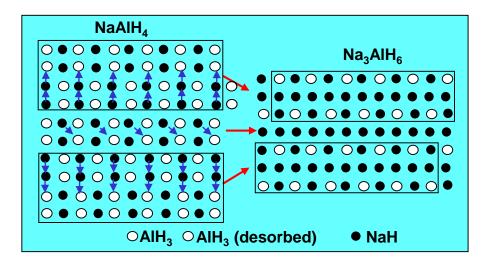
- Bulk H-uptake involving phase transitions
- Large volume change and Enthalpy are observed.



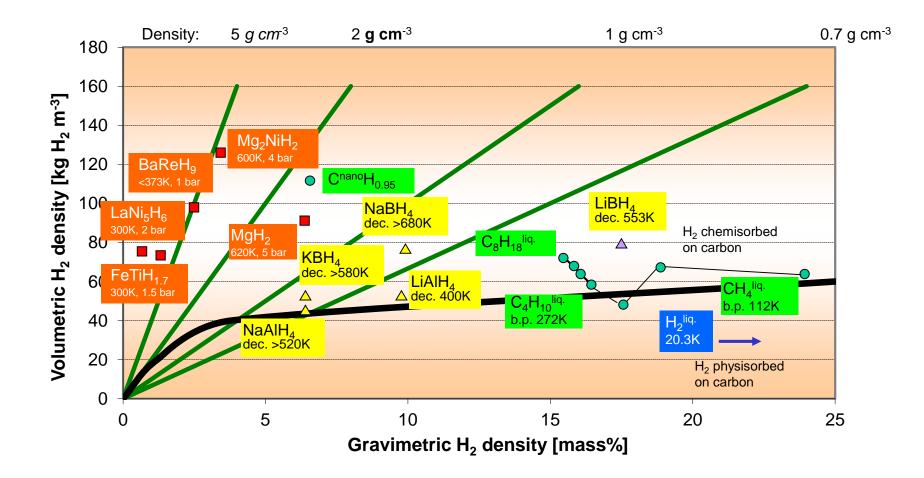
7.7 %w

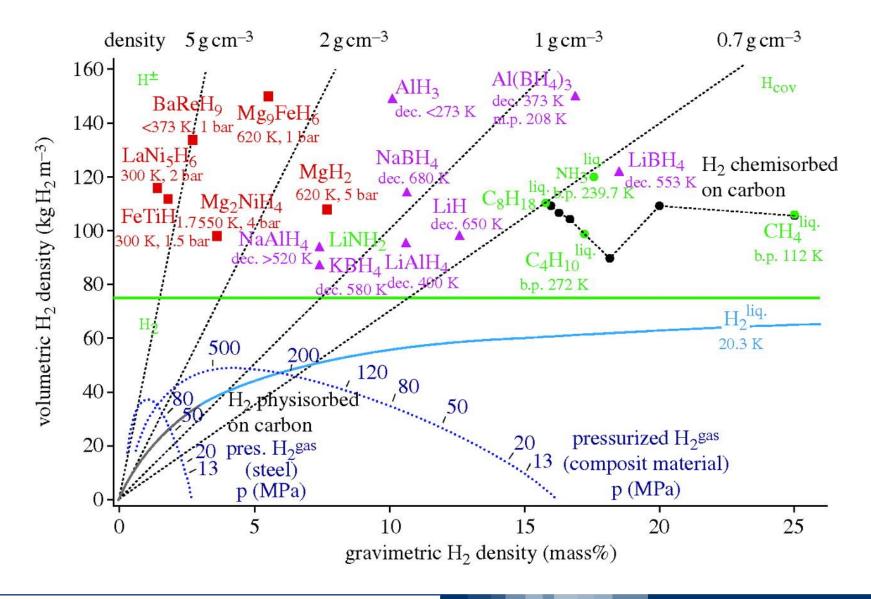

3.6 % w


 Mg_3MnH_7


5.2 %w

Hydrides: Basic Properties (3).


 $3 \text{ NaAlH}_4 \longrightarrow \text{ Na}_3 \text{AlH}_6 + 2 \text{ Al} + 3 \text{ H}_2$


Structure transformation and phase transition

Attilio Citterio

Comparison of H₂ Stored by Mass and by Volume for Different Species.

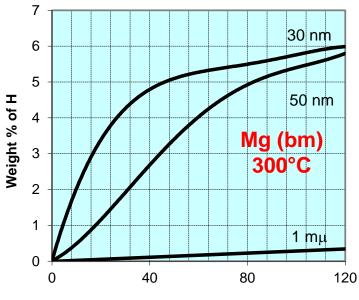
Trend in Volumetric vs. Gravimetric H₂ Density.

Attilio Citterio

Mg based Systems :

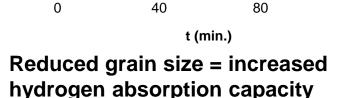
3.6%, activation, slow kinetic, high T (300°C)

7.6%, activation, slow kinetic, high T (300°C)

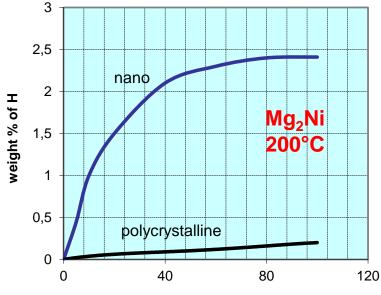

High enthalpy of hydride formation (-74 kJ·mol⁻¹)

- novel synthesis
- nanostructure control
- nanoscale catalysis
- nanocomposites
- functional nanocomposites

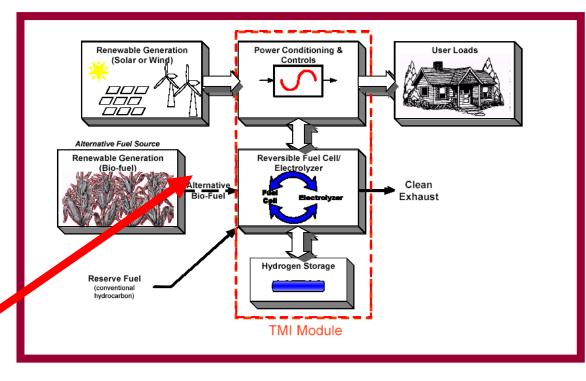
High T dehydrating


NanoScale Structures (10-9)

Grain Size, Specific Surface Areas.

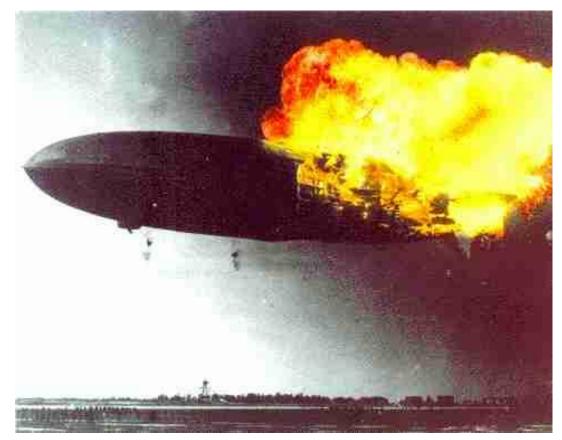

t (min.)

Reduced grain size = increased absorption and desorption kinetics


Large grain boundaries = paths for hydrogen diffusion Low grain size, high surface/volume = hydrogen access mechanical destabilization, defects = active sites

Attilio Citterio

Reversible Fuel Cell.


- Hydrogen replaces batteries used on conventional renewable energy systems:
 - Higher storage energy density
 - Potentially higher efficiency
 - Eliminates "deep discharge"
- Very much like conventional FC
 - The distinction is replacement of the electrolyzer and fuel cell with a "reversible fuel cell

- Efficiency is likely to be lower, but capital costs can in principle be reduced significantly.

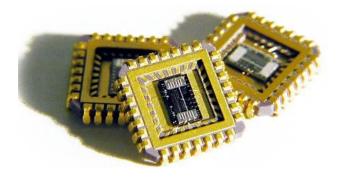
Hydrogen Safety The Zeppelin *The Hindenburg*.

- Contained 0.198 million m³ of hydrogen
- Burned and crashed in Lakehurst NJ on 6 May 1937
- 62 survivors
- 35 dead
 - One was burned
 - 34 jumped or fell

Cause of fire has now been attributed to the cellulose acetate/aluminum coating on the skin of the aircraft

Attilio Citterio

• Properties of hydrogen and other fuels:


Property	Gasoline	Methane	Hydrogen
Flammability limits in Air (vol %)	1.0 - 7.6	5.3 - 15.0	4.0 - 75.0
Ignition Energy in Air (MJ)	0.24	0.29	0.02
Ignition Temperature (°C)	228 - 471	540	585
Flame Temperature in Air (°C)	2197	1875	2045
Explosion Energy (g-TNT/kJ)	0.25	0.19	0.17
Flame Emissivity (%)	34 - 43	25 - 33	17 - 25

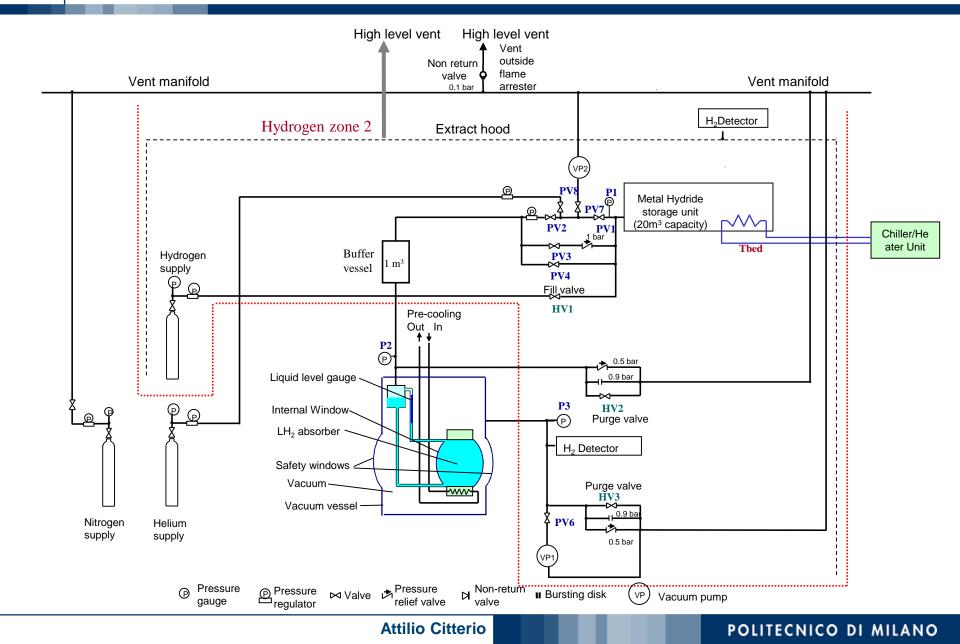
Hydrogen Safety.

- Effective detection also key to safe use of hydrogen
- Adequate sensor technology still lacking
 - Existing technology not specific to hydrogen
 - Detects other combustible gases
 - Carbon monoxide
 - Natural gas
 - Automobile exhaust
 - "False positive" readings
- Innovative new technologies offer promise.

Hydrogen Sensors

DCH Technology Inc. H2Scan

- Platinum filament resistivity sensor
- Highly selective to hydrogen


OptiSense HydroSafe optrodes

- Transition metal complex embedded in porous glass matrix
- Hydrogen-specific
- Color change from yellow to blue

New sensor technologies may be critical for both automotive and distributed power fuel cell introduction.

MICE Hydrogen System.

- ✓ There should be no open flames or smoking in areas where hydrogen is used.
- Work in an area with plenty of ventilation. If possible, work in a fume hood or use a canopy hood as fugitive vapors, if not captured, may collect near the ceiling.
- Ground all equipment and piping used with hydrogen, and make sure that you are properly grounded before working with hydrogen. Rubber soled shoes prevent you from being grounded, so you should touch a grounded object to discharge built up static electricity before beginning work.
- Wear appropriate lab safety gear for the work being performed: safety glasses/ goggles, lab coat, gloves and preferably a face shield.
- If working with liquid hydrogen you must have appropriate insulated gloves and protective shoes in addition to the appropriate safety gear. (Cryogenic liquid hydrogen can cause severe burns to the skin due to the extremely low temperature.) Presently, there is no known liquid hydrogen use at UCB. If you plan to use or are using liquid hydrogen you must first check with EH&S and the Campus Fire Marshall.
- Remove electrical equipment or electronic devices from the vicinity of hydrogen gas unless the device is certified "intrinsically safe". Even invisible small sparks from electronic devices could ignite hydrogen.
- Use metal piping with hydrogen. Do not use non-conductive or plastic tubing. Be sure to dissipate static charge when flowing hydrogen gas by electrically bonding and grounding the cylinder, metal piping and apparatus being used.

Storage and Handling.

- ✓ Hydrogen cylinders must be stored with valve's protective cap in place. If the cap has been removed, the cylinder must be stored upright and secured with noncombustible straps or chains.
- ✓ Hydrogen cylinders must be stored more than 20 feet away from cylinders of O₂ or other oxidizers, e.g., Br₂, Cl₂, F₂ or be separated by a noncombustible wall extending not less than 18" above and to the sides of the stored material.
- Never open the cylinder valve before making sure all your connections are secure as the static discharge from flowing gas may cause hydrogen to be ignited.
- ✓ NEVER USE ADAPTERS.
- ✓ Be aware of leaks! H_2 has a low viscosity which makes it to have a high leakage rate. A leak as small as 4 micrograms/second can support combustion. Due to low molecular weight, H_2 will diffuse rapidly in a room and will collect near the ceiling. Ventilation need.
- ✓ There must be no more than 1000 cubic feet of flammable gases per fire control area unless there are adequate engineering controls. A standard large cylinder contains about 260 cubic feet of hydrogen. There should be fire sprinklers wherever H₂ is used.
- ✓ All electronic equipment used near hydrogen gas must be grounded.
- Check that the pressurized system does not leak hydrogen with leak detection solution or pressure sensing.
- ✓ Close the cylinder valve when unused. Do not leave the piping pressurized if not used.

Reactivity of H_2 to be Considered.

- > It ignites easily with oxygen, could explode when heated.
- It reacts violently or explosively or forms heat- and/or-shock sensitive explosive mixtures with oxidizers, halogens, halogen compounds, acetylene, bromine pentafluoride, chlorine oxides, fluorine perchloride, oxides of nitrogen (check MSDS for list of incompatibles).
- Mixtures with chlorine may explode on exposure to light.
- Mixtures with oxygen may explode in presence of platinum catalyst.
- It is incompatible with copper(II) oxide, difluorodiazene, iodine heptafluoride, lead trifluoride, liquid nitrogen, lithium perchlorate triidrato, metals, nitrogen trifluoride, nitril fluoride, palladium(II) oxide, palladium trifluoride, potassium tetrafluorohydrazine, xenon hexafluoride.
- It forms hydrides when heated with alkalis, alkaline earth, and some other elements.

https://ehs.berkeley.edu/sites/default/files/lines-of-services/workplace-safety/80hydrogen.pdf

www.hydrogen.org www.efcf.com/reports www.psi.ch www.enea.it www.eren.doe.gov/hydrogen/ www.diebrennstoffzelle.de www.fuelcells.com www.wupperinst.org www.iefe.uni-bocconi.it www.lbst.de www.toyota.com www.bmw.com www.fiat.com www.iea.org www.svizzera-energia.ch