

School of Industrial and Information Engineering Course 096125 (095857) Introduction to Green and Sustainable Chemistry

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta" <u>http://iscamapweb.chem.polimi.it/citterio/education/</u> <u>course-topics/</u> General aspects:

- Toxicological Risk : dose-response
- Toxicology vs. epidemiology
- Physiological effects on man
- Environmental effects

Toxicity Assessment Data Gaps.

Estimated Mean Percent in Selected Universe

- As of August 2011, ~ 30 million organic and inorganic substances were documented (indexed by the American Chemical Society's Chemical Abstracts Service in their CAS Registry; excluding bio-sequences such as proteins and nucleotides)
- Of these chemicals, ~ **10 million** were commercially available.

Attilio Citterio

POLITECNICO DI MILANO

What does Toxicology Means?

- Evaluate the **HAZARD** (danger) of new/old substances
- Propose measures for preventing and contain the risk associated with the **EXPOSURE**
- Calculate the **RISK = f (hazard , exposure)**

E.g.

We handle (or we are exposed) to many chemicals in our everyday lives.

Gasoline is a good example. We know that it is toxic if ingested or inhaled, but if we take care to limit our exposure to it and handle it safely, we take little risk in using it.

Hazard

The inherent toxicity of a substance, based on appropriate models (*in-vivo, in-vitro, in-silico*) or information from human epidemiologic studies.

Exposure

- Route of entry:

Oral	=	Ingestion by mouth
Dermal	=	Skin exposure
Inhalation	=	Absorbed by lungs
Ocular	=	Eye exposure

- Probability of contact,
- Use of safety equipment (individual: e.g. gloves, collective: e.g. cabinet);

Risk

. . . .

The probability of adverse effect due to exposure of a chemical substance IN PARTICULAR CIRCUMSTANCES

Toxicity Testing in the Twenty-first Century.

NAS PANEL SEEKS MAJOR SHIFT IN HOW EPA ASSESSES CHEMICALS' TOXICITY

Date: June 22, 2007 -

A National Academy of Sciences (NAS) panel is calling for a major shift in how EPA assesses chemicals' toxicity, recommending that the agency base its toxicological research and regulatory processes on how substances affect biological pathways -- which send information within and between cells -- rather than so-called health endpoints, such as cancer.

The new studies envisioned by the panel would evaluate chemicals' effects on biological processes using cells or cell lines, preferably human, to examine how they react to exposure to different substances. Rather than focusing research and basing regulations on endpoints, such as a substance's apparent ability to create tumor cells or harm brain development in fetuses, EPA should center toxicity testing around "the perturbations in toxicity pathways that are expected to lead to adverse effects," the report says.

"In this framework, the goals of toxicity testing are to identify critical pathways that when perturbed can lead to adverse health outcomes and to . . . understand the effects of perturbations on human populations," says the report, *Toxicity Testing in the Twenty-first Century: A Vision and a Strategy*.

National Academy of Sciences Report (2007) Toxicity Testing in the Twenty-first Century: A Vision and a Strategy

On 11 March 2013 the **full ban on animal testing** for cosmetic products within the European Union entered into force.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2013:0135:FIN:EN:PDF

Inside E

Online access provided by Insid

Toxicity Modeling Problem.

Legislation related to toxicity and risk of chemicals: http://www.hse.gov.uk/chemicals/index.htm

Attilio Citterio

POLITECNICO DI MILANO

Example: Acrylamide vs. N-vinyl-Formamide.

Polyacrylamide, used in papermaking, oil recovery, personal care, concrete, water treatment.

Highly toxic, <u>causes CNS paralysis</u> ~ \$1/kg capacity > 500 000 t/y MW = C₃H₅NO

Poly(N-vinyl formamide), many of the same uses, hydrolyzed to polyvinyl amine.

Acute oral, > 1400 mg/Kg, not a neurotoxin ~ \$ 4.50/kg

Enzymatic route newest, greenest approach.

Process green, Product not

N-Vinylformamide Synthesis.

HCN, an inherent hazard, raises costs.

Product green, Process not

Essential versus Nonessential Nutrients.

elements like nitrogen, phosphorus, magnesium and zinc. They are necessary to life, but they are also toxic at high

Attilio Citterio

Lethal

concentration

Attilio Citterio

Toxicity Risk Assessment.

- Identify toxins
- Correlate entity of exposure to effects on health
 - Evaluation dose-response
 - Evaluation of exposure
- Evaluate the levels of acceptable risk
 - Quantify dead/diseases per million
- Estimate cost of controls
 - Economic costs of control vs. social costs or benefit.

Health Effects of Pollutants.

- Acute Toxicity: Short term exposure to high concentrations
- *Chronic Toxicity:* Long term exposure to low concentrations

Attilio Citterio

- Dose-response relationship
 - Threshold like
 - Non threshold like

POLITECNICO DI MILANO

 Dose: combination of environmental concentration and exposure time

Attilio Citterio

It is NOT equal to the residence time in the box model! Exposition Time = time of contact with toxin

- Acute: short time exposure (normally high concentration)
- Chronic: long time exposure (normally low concentration). It is NOT equal to the residence time in the box model!

Dose-response relationship:

- Threshold type
- Non threshold type

LD50 : the dose that produces 50% mortality in a test population. E.g. LD50 can be expressed in milligrams of substance per kilogram of test animal body weight (mg/kg).

NOAEL : No Observable Adverse Effect Level

DNEL : the Derived No Effect Level = $\frac{NOAEL}{Assessment factors}$

Attilio Citterio

POLITECNICO DI MILANO

Population Dose-Response.

Response Curve with and without Threshold.

Casarett e Doull, Cap. 2, pp. 18-27 Timbrell Cap. 2 (pp. 7-25)

Attilio Citterio

POLITECNICO DI MILANO

Exposure to Ozone (cat).

- NEL, No Effects Level
- NOEL, No Observed Effects Level
- NOAEL, No Observed Adverse Effects Level
- ✤ ADI, Acceptable Daily Intake
 - AWI, AMI, etc.
- TDI, Tolerable Daily Intake
- MCL, Maximum Contaminant Level (SDWA)
- SF, UF, MF: safety, uncertainty, modifying factors

Pollutants and Effects.

- Relation between high concentrations of pollutants and respiratory problems, *morbidity*
- Relation between high concentrations of pollutants and daily dead, *mortality*
- Relation between high concentrations of pollutants and mean life, *cancer risk*
- Risk population

*** Dose = C \times V**

- C : Pollutant concentration, mass/volume normally a time function.
- V : volume of inhaled air dV/dt, inhalation rate is function of the activity of the organism.

♦ Integrated Dose =
$$\int C\left(\frac{dV}{dt}\right) dt$$
♦ Exposure = $\int C dt$

Assessment of Effects on Health Correlation between exposure and specific response.

- Toxicological studies on animals
 - expose animals (cat, mouse) to pollutant of concern in controlled conditions and see the effects, then extrapolate the results to man
- Epidemiologic studies
 - analyze the effects on populations with similar characteristics unless exposition to pollutant of concern

In vitro studies

- verify on model system the relationship exposure/response
- In silico studies
 - predict the effects based on structural models

In-vivo models

In-vitro models

In-silico models

POLITECNICO DI MILANO

Attilio Citterio

Clinical/laboratory experiments:

- Advantages
 - Controlled change of exposure
 - Controlled environment of individuals
- Disadvantages
 - Small samples
 - Short testing periods
 - Not humanoid subjects
 - High costs

Measures of disease occurrence

- Cumulative Incidence, CI, the proportion of healthy individuals who get the disease
 - CI = Number of individuals who get the disease during a period / number of individuals in the population

Disadvantages:

- Wide dimension of individuals sample
- Possible long term studies
- Absence of control on exposure and environment
- Unknown history, behavior of individuals
- Mobility of individuals

When toxic compounds enter the body, they may have a range of effects.

- At low levels, there may be no effect. This "threshold" may be considered a "safe" level of exposure.
- Chemicals may have acute effects, the result of a high dose in a short period of time. Most animal experiments are simple acute toxicity studies.
- Chemical may also have chronic effects, caused by a low-level dose over a long period
 - Acute / chronic
 - Reversible / irreversible
 - Immediate / delayed
 - Idiosyncratic hypersensitivity
 - Local / systemic
 - Target organs

1

Acute Mammalian Toxicity	Very high	High	Moderate	Low
Oral LD ₅₀ (mg⋅kg⁻¹)	≤ 50	> 50 - 300	> 300-2000	> 2000
Dermal LD ₅₀ (mg·kg ⁻¹)	≤ 200	> 200 - 1000	>1000-2000	> 2000
Inhalation LC ₅₀ (vapor/gas) (mg·L ⁻¹)	≤ 2	> 2 - 10	> 10 - 20	> 20
Inhalation LC ₅₀ (dust/mist/fume) (mg·L ⁻¹)	≤ 0.5	> 0.5 - 1.0	> 1.0 - 5	> 5
1 1	I	toxic	Highly to	xic
		0.4	0.01	0.001
UU _{g/kg} IU	1	0.1	0.01	0.001

Acute mammalian toxicity criteria differentiate compounds based upon a common measure of short term exposure toxicity, the median lethal dose or concentration (LD_{50} or LC_{50}), through oral, dermal, and respiratory routes. These values were derived from the GHS criteria [GHS, Chapter 3.1: Acute Toxicity. 2009, United Nations].

Endpoint (LOAEL, NOAEL)	High	Moderate	Low	Very Low
Oral (mg/kg-bw/d)	<50	50-250	>250-1000	> 1000
Dermal (mg/kg-bw/d)	<100	100-500	>500-2000	> 2000
Inhalation (vapor, mg/L/d)	<1	1-2.5	>2.5-20	> 20
Inhalation (dust, mg/L/d)	<0.1	0.1-0.5	>0.5-5	> 5

- · Chemicals with data
- Considers exposure route
- Examples of threshold-based criteria:
 - Acute toxicity
 - Acute aquatic toxicity
 - Bioaccumulation
 - Repeated dose toxicity
 - Reproductive & developmental toxicity

Acute Toxicity

- Oral (LD₅₀), Dermal (LD₅₀), Inhalation (LC₅₀)
- Skin Irritation or Corrosion
- Eye irritation or Corrosion
 - Serious Eye Damage
- Sensitization
 - Dermal and Respiratory
- Genotoxicity/Mutagenicity
 - Germ Cell Mutagenicity
- Carcinogenicity

- Reproductive Toxicity
- Specific Target Organ
 Toxicity Single Exposure
- Specific Target Organ Toxicity - Repeated Exposure
- Aspiration Hazard

¹See : Appendix A to 2012 OSHA HazCom Standard (1910.1200) and GHS (5th edition; 2013) for more detailed information on each endpoint

POLITECNICO DI MILANO

Human Toxicity by Ingestion.

$$INGTP_{i} = \frac{C_{i,w} / RfD_{i}}{C_{tot,w} / RfD_{tot}} \quad \text{or} \quad INGTP_{i} = \frac{C_{i,w} / LD_{50}}{C_{tot,w} / LD_{50,tot}}$$
$$I_{ING} = \sum_{i} INGTP_{i} \cdot m_{i}$$

Compd.	RfD, mg/kg/d	LD ₅₀ , (rat) mg/kg	P _{vap} at 25°C, mbar	RfC, mg/m ³	LC ₅₀ , g/m ³ 4h (rat)	INGTP
toluene	0.08	636	38	5	49	1.0
CH_2CI_2	0.06				76	0.64
hexane		28,700	200	0.2		7.2

RfD and RfC data available on the IRIS website. <u>http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceList</u> LD₅₀ and LC₅₀ data available on NTP website. <u>http://ntp.niehs.nih.gov:8080/index.html?col=010stat</u> (search for the compound, select it, then select Toxicity Effects on the left)

Basic Assumptions.

- (a) The response is causally related to the compound administered
- (b) The response is a function of the concentration at the site of action
- (c) The concentration at the site of action is related to the external dose
- (d) An interaction at the site of action initiates a proportional response
- (e) The crucial interaction involves reversible formation of a receptor-toxin complex

Effects on Health from Air Pollution Exposure.

- Bronchitis
 - Inflammation of bronchial ducts
- Pulmonary Emphysema
 - Destruction of alveolar sacs
- Silicosis
 - Internal covering of lungs with particles

Alveolar Sacs
Effects on Respiratory System.

- Smell
 - i.e.: Hydrogen sulfide
- Mucous irritation, inflammation
 - i.e.: Ozone, Asbestos
- Mutagen agents
 - i.e.: Radioactive particles, Nanomaterials

- Blood Poisoning by CO
 - Oxygen uptake is limited

CO + hemoglobin ≠ CO·Hb (carboxyhemoglobin)

- CO fits in the site of Hb normally used to transport oxygen to body tissues
- The exposure to CO is cumulative and reversible
- Lead Poisoning
 - Red blood cells transport Lead along the body

POLITECNICO DI MILANO

Heavy Metals:

Lead

- cerebral damages, anemia, bones, immune system

Mercury

- CNS attack, immune system, cell membranes

Cadmium

- kidney, heart, CNS centers of odor, cancer promoter

Arsenic

- cell metabolism

- "Aluminum"
 - stomach, bones, cell metabolism

Materials inhaled or ingested which induce cellular mutations

- Heavy metals
 - Arsenic, Chrome, Cadmium
- Volatile Organic Solvents
- Polycyclic aromatic compounds
- Aromatic amines
- Dioxins

<u>Carcinogenicity</u> demands further deliberation.

- Many chemicals have the potential to cause cancer
- Only a relatively few are <u>known</u> human carcinogens
 - http://ehp.niehs.nih.gov/roc/toc10.html
 - "reasonably expected" to cause human cancer = 174 agents
 - "known" to cause human cancer = 49 agents
 - http://monographs.iarc.fr/monoeval/crthgr01.html
 - 75 agents known to cause human cancer
- High-dose animal studies identify potential carcinogens, but the results may not apply to humans, especially at low doses.
- The carcinogenic effects of naturally occurring chemicals is often overlooked.

Dr. Bruce Ames, author of the Ames mutagenicity test, suggest we take a more reasonable approach to carcinogens.

 HERP index (Human Equivalent Rodent Potential) ranks carcinogens in our environment according to the dose that caused cancer in rodents.

Attilio Citterio

http://pubs.acs.org/hotartcl/chas /96/julaug/ames/ames.html

POLITECNICO DI MILANO

Carcinogenicity	Very high	High	Moderate	Low
Carcinogenicity	Known or presumed human carcinogen (equivalent to GHS Category 1A and 1B)	Suspected human carcinogen (equivalent to GHS Category 2)	Limited or marginal evidence of carcinogenicity in animal (and inadequate evidence in humans)	Negative studies or robust mechanism based SAR

These criteria mirror the classification approach used by the International Agency for Research on Cancer (IARC),* and incorporate the Globally Harmonized System (GHS) classification scheme.** Authoritative lists can supplement these criteria.

*[http://monographs.iarc.fr/ENG/Preamble/currentb6evalrationale0706.php.

**GHS, Chapter 3.6: Carcinogenicity. 2009, United Nations.

Other Toxicity Criteria for Hazard Designations.

- Mutagenicity/Genotoxicity
- Reproductive and Developmental Toxicity
- Reproductive and Developmental Toxicity (including Developmental Neurotoxicity)
- Neurotoxicity
- Repeated Dose Toxicity
- Respiratory and Skin Sensitization
- Eye and Skin Irritation / Corrosivity
- Endocrine Activity

Radiation Toxicity.

- Radioisotopes: an unstable form of an atom (with propensity to "decay" spontaneously)
- Nuclear symbol:

- Alfa and Beta particles, Gamma rays: high-energy products of radioactive decay
- Half-life: time to reduce to an half the mass of radioisotope by decay

Receptors : Molecular Targets of Chemical Compounds.

Attilio Citterio

Receptors

- Ion Channel Receptors
- Carrier Proteins
- G-Protein Coupled Receptors
- Tyrosine-Kinase Receptors
- Ah Receptors
- Steroid Hormone Receptors

Usually proteins:

- Located on outside of cell wall, or inside cell
- Interact with ligands

Receptors Important in Pharmacology.

- Agonists and antagonists of neurotransmitters:
 - cholinergic receptors: acetylcholine;
 - nicotinic receptors: skeletal muscle, autonomic ganglia;
 - muscarinic receptors: smooth muscle, heart, exocrine glands
- Adrenergic receptors : dopamine, endorphins, encephalins, histamine
- Hormone receptors : Insulin, cortisone (glucocorticoids), estrogen, progesterone, testosterone, prostaglandins
- Drug receptors: Benzodiazepines

- Ah (TCDD) receptor
- Steroid receptors

Reversible formation of a receptor-toxin complex

- R = receptor
- T = toxic compound
- R-T = receptor-compound complex

 k_1 and k_{-1} are rate constants for formation and dissociation (respectively) of the complex R-T

Dose-Response Relationship

Attilio Citterio

Common Dose-response Models.

- Normal:
- Logistic:
- Modified Logistic: (e.g. Seefeldt et al. 1995)

$$y_{i,j} = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{\sigma^2}}$$
$$y_{i,j} = \frac{1}{\left(1 + e^{\beta_1(dose_i - \beta_0)}\right)}$$
$$y_{i,j} = C + \frac{D - C}{\left(1 + e^{(-B(dose_i - I))}\right)}$$

- **Gompertz:** $y_{i,j} = \beta_0 e^{-e^{-\beta_1(dose)}}$
 - Exponential:

$$y_{i,j} = \beta_0 e^{-\beta_1(dose)}$$
$$y_{i,j} = \beta_0 \left[1 - e^{-\beta_1(dose)} \right]$$

Attilio Citterio

POLITECNICO DI MILANO

Acute Toxicity Studies.

Single dose - rat, mouse (5/sex/dose), dog, monkey (1/sex/dose)

- 14 day observation
- In-life observations (body wt., food consumption, clinical observations)
- Necropsy

Repeated dose studies - rat, mouse (5-10/sex/dose), dog, monkey (2/sex/dose)

- In-life observations
- > Necropsy
- Histopathology
- Clinical pathology (optional)

Chemical	LD ₅₀ (<i>mg/kg</i>)	Toxicity
Sodium Chloride	4000	Slightly toxic
DDT	100	Moderately toxic
Picrotoxin	5	Highly toxic
Strychnine	2	
Nicotine	1	
Dioxin	0.001	Super toxic
Botulinum Toxin	0.00001	

Category	Dose (<i>mg/kg</i> body weight)	Species	Chemical
Practically nontoxic	15 000		
Slightly toxic	10 000	Mouse	Ethanol
	5 000		
Moderately toxic	4 900	Rat	Glyphosate
	750	Rat	Atropine
	500		
Highly toxic	250	Rat	Carbaryl
	50		
Extremely toxic	13	Rat	Parathion
	5		
Supertoxic	3	Rat	Warfarin
	0.4	Duck	Aflatoxin B ₁

Species	LD ₅₀ (µg/kg body weight)
Guinea-pig	0.5-2
Rat	20 -100
Mouse	114-284
Rabbit	10-115
Chicken	25-50
Rhesus monkey	< 70
Dog	>30-100
Hamster	5051

*Dioxin: 2,3,7,8-tetrachlorobenzodioxin: TCDD

- Interval of exposure
- Interaction may be not reversible
- Repair or removal of complex R-T may be important
- Response may be multi-step, binding of T to R may not be the ratelimiting step
- Assumes normal (Gaussian) distribution
- Uniform population no significant inter-individual differences in response
- Dichotomous (quantal) response, e.g. tumor frequency.

Risk factors after TRGS 440 (GER 2001)

Risk phrases	Hazards	effect factor
R45, R46, M1, M2, K1, K2	carcinogenic or mutagenic	50,000
R26, R27, R28 or LGW < 0,1 mg/m ³	highly toxic	1,000
R32, R60, R61, RE1, RE2, RF1, RF2	potential reproduction toxicity or teratogenic, formation of highly toxic gases in contact with	1,000 n acids
R35, R48/23, R48/24, R48/25, R42, R43	highly corrosive, high chronic toxicity, potentially sensitizing	500
R23, R24, R25, R29, R31, R34, R41, H	toxic, generation of toxic gases in contact wit water or acids, cauterizing for eyes, skin abs	h 100 orption
R33, R40, K3, M3, pH < 2 or pH > 11,5	risk of cumulative effects, potentially irreversid damages, suspected mutagenic or carcinoge effects	ible 100 enic
Not tested sufficiently	= No LGW, no risk phrases	100
R48/20, R48/21, R48/22, R62, R63, RE3,	chronically harmful, suspected reproduction t or teratogenic effects	toxicity 50
R20, R21, R22	harmful	10
R36, R37, R38, R65, R67	irritating, narcotic	5
other risk phrases or LGW > 100 mg/m ³		1

Toxicity Trends in Similar Molecules.

DL₅₀ (mouse, oral) 54.3 mmol/kg 133 mmol/kg 12.3 mmol/kg 13.9 mmol/kg

DL₅₀ (mouse, oral) 43.5 mmol/kg 29.8 mmol/kg

2.74 mmol/kg

1.20 mmol/kg

Attilio Citterio

Toxicity Trends in Reaction Products.

Effect factor 0 - 10

POLITECNICO DI MILANO

Sub-Acute Toxicity.

- > 28 week study (3 doses and control)
- Species rat (10/sex/dose), dog or monkey (2/sex/dose)
- In-life observations
- Clinical pathology
- Necropsy
- Histopathology

Sub-Chronic Toxicity.

- > 13 week study +/- 4 wk recovery (3 doses and control)
- Species rat (10/sex/dose), dog or monkey (2/sex/dose)
- In-life observations (+/- ophthalmology)
- Clinical pathology
- Necropsy
- Histopathology

- > 1 year study +/- 4-13 wk recovery (3 doses and control)
- Species rat (10-15/sex/dose), dog or monkey (2-3 /sex/dose)
- In-life observations including ophthalmology
- > Necropsy
- Histopathology

Any exogenous agent that causes adverse health effects in an intact organism, or its progeny, consequent to changes in **endocrine function**. *Specifically*:

Any exogenous chemical that interferes with the production, release, transport, binding, action, or elimination of natural hormones responsible for the maintenance of homeostasis and regulation of development.

The WHO/IPCS definition is characterised by three elements: a chemical can be defined an ED;

- 1. if it shows an adverse effect in an intact organism (generally from in vivo animal testing);
- 2. if it is able to interfere with the endocrine/hormonal system (mechanistic data show the substance can act via an endocrine/hormonal mode of action); and
- 3. if a plausible link can be established between the endocrine mode of action and the adverse effect observed for the substance.

The EU List of Potential Endocrine Disruptors.

- Category 1: Substances for which endocrine activity have been documented in at least one study of a living organism. These substances are given the highest priority for further studies. Category 1 contains 194 substances.
- Category 2: Substances without sufficient evidence of endocrine activity, but with evidence of biological activity relating to endocrine disruption.
- Category 3a and 3b: Substances for which there are no indications of endocrine-disrupting properties or which cannot be evaluated due to a lack of data.

Evaluations are based on various endocrine modalities: the androgen (A), the oestrogen (E), the thyroid (T) and the (S) steroidogenesis modalities (often referred to as EATS modalities) (OECD 2012*; EFSA 2013**)

*http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)22&doclanguage=en **EFSA Journal 2013;11(3):31323. doi: 10.2903/j.efsa.2013.3132

Endocrine Disruptors.

At Least 4 Modes of Action

- Serving as steroid receptor ligands.
- Modifying steroid hormone-metabolizing enzymes.
- Perturbing hypothalamic pituitary release of trophic hormones.
- Miscellaneous or unknown.

Chemicals: Wide Variety

- Pesticides
- Herbicides
- Fungicides
- Plasticizers
- Surfactants
- Organometals
- ✤ Halogenated PAHs
- Phytoestrogens

Synthetic estrogen

Diethylstilbesterol

o.p'-DDT

Attilio Citterio

Natural Products	Environmental pollution	Industrial products	Pharmaceutical	Complex mixtures
Genistein	DDT	Bisphenol-A	Etinyl estradiol	Effluents
Naringenin	Kepone	Nonionic surfactants	Diethylstilbestrol	Sediment extracts
Coumestrol	PCBs/HO-PCBs	Phthalate esters	Gestodene	Air particulate matter
Zearalenone	PAHs and dioxins	Endosulfan	Norgestrel	Tissue extracts

*DDT = dichlorodiphenyltrichloroethane, PCBs = polychlorinated biphenyls, HO-PCBs = hydroxylated PCBs

Environ. Toxicol. Chem. 17, 1998, 5.

Tributyltin

Causes imposex and intersex in gastropod mollusks.

Neogastropods have separate sexes but it was observed that many female dogwhelk from some areas of the UK had a penis-like structure behind the right tentacle. This was also seen later in other gastropods in the eastern US. These gastropods also had a vas deferens (sperm duct) and a convoluted gonoduct. The term "imposex" was coined to describe the superimposition of male characters onto females. It was demonstrated that levels of imposex were elevated close to marinas, a feature attributed to the presence of anti-fouling paints.

Carcinogens and Carcinogenicity Studies.

- 2 years (3 doses and control)
- Species rats and mice (50/sex/dose)
- In-life observations
- Clinical pathology (rats, optional)
- Necropsy
- Histopathology

Evaluation Issues

- Survival
- Body weight
- Variability of endpoints
- Pathology Working Group

> MTD

- Statistics vs. biology
- Dose-response
- Mechanistic Factors

Human Health Protection.

- Health and Safety at work
 - Short-term exposure limit (STEL)
 - Time-Weighted Average (TWA)
- Specific quality goals
- Monitoring and Bio-monitoring

Occupational Toxicology

Multidisciplinary field:

- Routes of exposure & uptake
- P450 metabolism & characterization of toxic metabolites
- Phase II metabolism & identification of urinary metabolites
- Characterization of DNA adducts
- Identification of target tissue

Example: Metal Limits in EU Toy Directive (2009/48/EC)

Element Requirements (mg/kg)			
	In dry brittle, powder like or pliable toy material	In liquid or sticky toy material	In scraped off toy material
Aluminum	5625.00	1406.00	70000
Antimony	45.00	11.30	560
Arsenic	3.80	0.90	47
Barium	4500.00	1125.00	56000
Boron	1200.00	300.00	15000
Cadmium	1.30	0.30	17
Chromium(III)	37.50	9.40	460
Chromium(VI)	0.02	0.005	0.2
Cobalt	10.50	2.60	130
Copper	622.50	156.00	7700
Lead	13.50	3.40	160
Manganese	1200.00	300.00	15000
Mercury	7.50	1.90	94
Nickel	75.00	18.80	930
Selenium	37.50	9.40	460
Strontium	4500.00	1125.00	56000
Tin (Organic Tin 0.9, 0.2, 12)	15000.00	2750.00	180000
Zinc	3750.00	938.00	46000

POLITECNICO DI MILANO

Attilio Citterio

Occupational Exposure Limits.

- TLV, Threshold Limit Value
- TWA, Time-Weighted Average (8h/day, 40h/ week)
 - Used for contaminants with longer-term or chronic
 - Lead, carcinogens, etc.
 - "Integrated" exposure over the shift
 - Single sample TWA
 - Multiple samples can be combined

$$TWA = \frac{C_1 T_1 + C_2 T_2 + \dots + C_n T_n}{T_1 + T_2 + \dots + T_n}$$

- TLV-C, Ceiling level
- STEL, Short-term exposure limit
- IDLH, Dangerous to Life and Health

Example of TWA, STEL, and IDLH Value for Some Chemicals (in ppm)

Substance	TLV TWA	TLV STEL	IDLH
Acetaldehyde	-	25C	2,000
Acetic Acid	10	15	50
Acetone	500	750	2,500
Acrolein	-	0.1C	2
Acrylonitrile	2	-	85
Ammonia	25	35	300
Arsine	0.05	-	3
Benzene	0,5	2,5	500
Boron Trifluoride	-	1C	25
Bromine	0.1	0,2	3
1,3 – Butadiene	2	-	2000
Butane	1000	-	-
n-Butyl Acrylate	2	-	-
n-Butyl Alcohol	20	-	1400
Butyl Mercaptan	0.5	-	500
Carbon Dioxide	5000	30000	40000
Carbon Disulfide	10	-	500
Carbon Monoxide	25	-	200
Carbon Tetrachloride	5.1	1	10

Data from 2005 Threshold Limit Values & Biological Exposure Indices, copyright 2005 by the American Conference of Governmental Industrial Hygienists (ACGIH). IDLH values extracted from the NIOSH Pocket Guide to Chemical Hazards, 2004 published by the National Institute for Occupational Safety and Health (NIOSH). "C" indicates Ceiling Limit.

Attilio Citterio

Assume 4 exposure samples

- 1. 1 hour, 10 ppm
- 2. 3 hours, 20 ppm
- 3. 3 hours, 30 ppm
- 4. 1 hour, 100 ppm

$$TWA = \frac{(1 \times 10) + (3 \times 20) + (3 \times 30) + (1 \times 100)}{(1 + 3 + 3 + 1)} = 32 \ ppm$$

(straight average = 40 *ppm*)

- Additivity Chemicals A, B, C...N are all toxic Potency of mixture = Sum of potencies of constituents Effect_{total} = Potency_A × Dose_A + Potency_B × Dose_B + Potency_C × Dose_C +....+ Potency_N × Dose_N
- Synergism Potency of the whole is greater than the sum of the potencies of the individual constituents

```
Effect_{total} >> Potency_A \times Dose_A + Potency_B \times Dose_B...
```

+... + Potency_N × Dose_N

- Potentiation One constituent is toxic, the other is not. Potency of the combination is greater than the potency of the active constituent Effect_{total} >> Potency_A × Dose_A where Potency_B = 0
- Antagonism Potency of the whole is less than the sum of the potencies of the individual components

Routes of Exposure.

- Airborne (dusts, fibers, particulate matter, aerosols, ${}^{\bullet}$ gases)
- Waterborne (solution, suspension, emulsion)
- Foodborne (solids, liquids) •

Portals of Entry

Experimental equivalents

- Skin (percutaneous) Skin-painting
- Respiratory tract (inhalation)
- Gastrointestinal tract (ingestion)
- Trans placental
- > Injection

- Intra-tracheal instillation
- Oral gavage
 - Administration to dam
 - Injection

Exposure Assessment.

The Major Structures of the Skin.

POLITECNICO DI MILANO

Attilio Citterio

Effect on Skin of Contact with Solvents.

Absorption

Distribution

Metabolism

Elimination

Attilio Citterio

Mechanisms of Uptake.

- Passive diffusion
- Filtration
- Carrier-mediated transport
 - Facilitated diffusion
 - Active transport
- Engulphment
 - Pinocytosis
 - Phagocytosis

Chemical uptake mechanism

Attilio Citterio

The cellular mechanism that involves the internalization of extracellular components (solid and liquids).

Factors Influencing Route and Uptake Rate.

- Properties of the chemical
 - Size and shape
 - Similarity to "endogenous" molecules
 - Solubility
 - Hydrophilicity / hydrophobicity
 - Lipophilicity / lipophobicity
 - Partition coefficient: K_{ow}
 - Log10 of [octanol]/[water]
 - Charge
 - Ionization state

Physiologically-Based Pharmacokinetics Modeling.

- Each relevant organ or tissue is a compartment
- Material flows into compartment, partitions into and distributes around compartment, flows out of compartment usually in blood
- If blood flow rates, volume of compartment and partition coefficient are known, can write an equation for each compartment
- Assuming conservation of mass, solve equations simultaneously – can calculate concentration (mass) in each compartment at any time

Example of a Model.

Biomarker Types.

Attilio Citterio

Please note that these categorizations are NOT exact - they are just meant to provide a framework for understanding. (E.g., DNA adducts may be considered a measure of early effect rather than of exposure.)

Biomarkers of Exposure

- Body Burden
 - Exhaled breath
 - Blood or urinary levels
- Internal Metabolite Dose
 - Blood metabolite levels
 - Protein adducts
 - Urinary metabolite levels
- Biologically-Effective Dose
 - DNA adducts

Biomarkers of Effect

- Sister chromatid exchanges
- Micronuclei
- Chromosomal damage

Biomarkers of Susceptibility

- Breathing rate
- Enzyme genotype (DNA sequence) or phenotype (activity)
 - P450s
 - Glutathione S-transferase
 - Epoxide hydrolase
 - DNA repair enzymes

External Exposure

R² represents the % variation in the biomarker (e.g., tissue dose) that can be explained by exposure

High R²

- external exposition is linearly related to dose
- Iow inter-individual variability in uptake & metabolism
- biomarker is specific
- sample size is adequate

Low R²

MORE DIFFICULT TO INTERPRET

- external exposure is not linearly related to dose
- high inter-individual variability in uptake
 & metabolism
- biomarker is non-specific
- sample size is inadequate

The choice is dependent upon a number of factors:

- Time frame (short or long-term effects? latency of disease?)
- Is exposure constant or highly variable over mins/hrs/days/weeks/months?
- Number of subjects?
- Budget/time constraints?
- Toxic metabolite known?
- Mechanism of toxicity known or not?
- Route of exposure (just inhalation, or also dermal/oral)?
- Inter-individual differences in uptake (protective equipment) or metabolism?
- Source of exposure (just work?)
- What (bio)monitoring techniques are available?

Ambient Monitoring vs. Bio-Monitoring.

External Monitoring

- Can compare to old records
- Lower cost
- Less skilled labor
- Larger number of samples
- Easier to obtain (air)
- Just inhalation exposure
- Just work exposures
- Short time period (mins-hrs)
- Air levels of compound

Exposure Biomarkers

- New techniques, little historical data
- Higher cost
- Highly skilled labor
- Smaller number of samples
- Harder to obtain (blood, urine, tissue)
- All routes of exp (inhalation, dermal, oral)
- Reflects ALL exposures (hobbies, diet)
- Short to long time periods (mins-weeks)
- Tissue levels of reactive metabolite
 - Accounts for personal habits (hand washing, use of protective equipment)
 - Inter-individual differences in metabolism (both activation & detoxification) and repair

Biomarker Choice.

External Exposition

- Good relationship between biomarker and exposure
- High R²
- No need for a biomarker choose whichever is cheaper/easier (generally the external measure)

External Exposition

- Poor relationship
- Low R²
- Looks like 2 distinct populations indicative of differences in either
 - uptake (protective equipment)
 - metabolism
 - repair
- Biomarkers helpful in this case

Proteins used:

- Hemoglobin (Hb)
 - 120 day lifespan of the red blood cell
 - 150 *mg/mL* blood
- Albumin
 - 20-25 day half-life
 - 18-25 *mg/mL* blood
- Target tissue protein
- Protein adducts can be used to predict the average blood concentration (blood dose) of the reactive metabolite over the lifespan of the protein. Regardless of which protein is used, the predicted dose should be the same.

- ➢ 48 billion kilo produced in the world in 2016
- human exposures due to cigarette smoking, gasoline & processing of petroleum products
- highest exposures occur in countries such as China and Turkey
- causes cancer in rodents and hematotoxicity and leukemia in exposed humans
- metabolite(s) responsible for benzene toxicity are still unknown; possibilities include:
 - benzene oxide (BO)
 - 1,2-or 1,4-benzoquinone
 - hydroxybenzoquinone
 - trans,trans-muconaldehyde
 - reactive oxygen species

Benzene Metabolism.

POLITECNICO DI MILANO

Attilio Citterio

Typical Distribution of Ethoxylate Adducts:

 $CH_3(CH_2)_xO(CH_2CH_2O)_nSO_3Na$

x = 7 - 15, typically 11.

90-40% of the carbon chains are linear, the remainder being monobranched 2-alkyl isomers, predominantly 2-methyl.

n ranges from 0-8.

Used as detergent/cleaning agent. Ethoxylation of alcohols is carried out by base catalyzed reaction with ethylene oxide. The *n* average for the important sulphation grades is 1-3 moles EO per mole alcohol. Toxic dioxane must be removed.

Average EO Groups	3	2	1
Oligomer distribution, %m/m, of RO(CH ₂ CH ₂ O) _n H where n=			
0	13.1	23.5	42.9
1	9.1	12.8	20.3
2	11.9	15.6	14.9
3	12.9	13.4	8.8
4	11.8	10.1	5.1
5	10.3	7.5	3.0
6	7.9	5.0	1.9
7	6.5	4.0	1.4
8	4.8	2.9	0.9
9	3.9	1.8	0.5
10	2.9	1.4	0.3
11	1.9	0.9	0.1
12	1.3	0.6	
13	0.7	0.3	
14	0.5	0.2	
15	0.3		
Average EO Number	3.1	2.1	1.0

Source: Hera 2003

 $Exp^{sys} = F^1 \times C \times K_p \times t \times S^{der} \times n / BW$

F¹% weight fraction of substance in product

C product concentration in mg/ml:

 K_p dermal penetration coefficient

t duration of exposure or contact

S^{der} surface area of exposed skin
n product use frequency (tasks per day)
BW body weight

20% (0.2) [AISE Internal data] 10 mg/ml [AISE/HERA Table of H&P, 2002] 1.62 × 10⁻⁴ cm·h^{-1*} [Black et al. 1979] 10 min (0.167h) [AISE/HERA Tab 2002] 1980cm² [TGD, 1996] 3 [AISE/HERA 2002] 60 kg

 $Exp^{sys} = [0.2 \times (10 \text{ mg/ml}) \times (1.62 \times 10^{-4} \text{ cm/h}) \times (0.167 \text{h}) \times 3 \times (1980 \text{ cm}^2)] / 60 \text{ kg} =$ $= 5.4 \,\mu\text{g}\cdot\text{kg}^{-1} \text{ bw/day}$

* the dermal penetration coefficient calculated from the dermal flux (0.39 μ g/cm²) which was determined in an in vivo dermal penetration experiment conducted by Black and Howes according to the following algorithm: Kp = dermal flux/exposure time x concentration of solution; Kp = 0.00039 mg/cm²/24h \square 10 mg/cm³ = 1.62 \square 10⁻⁴ cm/h

Attilio Citterio

Chemistry-based Data Mining & Exploration.

Search by: Chemical Name CAS Registry #.

Integrated Risk Information System (IRIS) Integrated Risk Information System (IRIS) <th></th>	
 Arean et Additions Contract us Service 1, 2 Contract u	
KIRS Home Basic Information KIRS Home Basic Information KIRS Home Basic Information KIRS Home Basic Information KIRS Home Compare IRIS Values KIRS Gossary Frequent Cuestions Stel Construction KIRS Gossary Frequent Cuestions Compare IRIS Values Stel Compare IRIS Values KIRS Gossary Frequent Cuestions Compare IRIS Values Compare IRIS Values Stel Compare IRIS Values Compare IRIS Values Stel Compare IRIS Values Stel Compare IRIS Values Stel Compare IRIS Values Compare IRIS Values Compare IRIS Values Stel Compare IRIS Values Stel Compare IRIS Values Compare IRIS Values Compare IRIS Values Compare IRIS Values<	
RIK Home Basic Information Rik J (rictograted Risk Information System) is a compilation of electronic reports on specific substances found in the environment on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information on substances for use in nisk assessments, decision-making and regulatory activities. The information in consistent information in substances for use in nisk assessments, decision-making and regulatory activities. The information is decision for the web site information is decision for the web site. What is IRIS University is internet decision for the web site is information is decision for use of the web site. What is IRIS INFORMATION for the web site is information for use of the web site. Inf	
IRIS Process At of Z List of IRIS Substances Advanced Search Compare IRIS Values IRIS Guidance Download IRIS IRIS Track Site Overview IRIS Gossary Frequent Questions Tools & Databases Related Links Upcoming Reviews and Dr More Recent I IRIS Home I.2.2-Trichlorozy Basic Information IRIS Home I.2.2-Trichlorozy	
A to Z List of IRIS Substances Advanced Search Compare IRIS Values IRIS Guidance Download IRIS IRIS Track Site Help & Tools Site Help & Tools Site Verview IRIS Guidance Download IRIS IRIS Grade Using the IRIS Database IRIS Grade IRIS Grade IRIS Grade Using the IRIS Database IRIS Grade IRI	
Advanced Search • An Averywey of the web_site Compare IRIS Values • Who terremediate is IRIS: IRIS Guidance More frequent questions >> Download IRIS • Advanced Search in IRIS IRIS Track Site Advanced Search in IRIS Site Averywey • Advanced Search in IRIS Frequent Questions • Advanced Search in IRIS Site Averywey • Advanced Search in IRIS Frequent Questions • Advanced Search in IRIS Prequent Questions • Advanced Search in IRIS Related Links • Download IRIS Upcoming Reviews and De Integrated Risk Information System (IRIS) Ware here: EP2 Home * Human Health * IRIS Home * A to Z List of IRIS Substances IXIS Home IXIS Home IXIS Home IXI	
Compare IRIS Values IRIS Guidance Download IRIS IRIS Guidance Download IRIS IRIS Track Site Help & Tools Site Overview IRIS Gossary Frequent Questions Tools & Databases Dewnload IRIS IRIS Gossary Frequent Questions Tools & Databases Upcoming Reviews and Dr More Recent / More Recent / Inte following c More Recent / Inte following c More Recent / Ist Home 1:2:3-Trichborger	
IRIS Guidance More frequent questions >> Download IRIS Image: Compare IRIS Database IRIS Guidance • • •	
Download IRIS Image: Compare IRIS Database Image: Compare IRIS Values Image: Compare IRIS Values Site Overview IRIS Glossary Frequent Questions Tools & Databases Advanced Search in IRIS Compare IRIS Values Download IRIS Compare IRIS Values Download IRIS Image: Compare IRIS Values Image: Compa	
IRIS Track Using the IRIS Database Im Peter, the IRIS Virtual Representative. I am an automated system available Site Help & Tools Site Overview IRIS Glossary Frequent Questions Tools & Databases Advanced Search in IRIS Compare IRIS Values Download IRIS More Recent Additions Contact Us Search: O All EPA IRIS Substances More Recent Additions Contact Us Search: O All EPA IRIS Substances At to Z List of IRIS Substances The substances in IRIS are listed in alphabetical order or by last significant revision date. You can click on the first letter of the 	4
Site Help & Tools Site Overview IRIS Glossary Frequent Questions Tools & Databases Advanced Search in IRIS Compare IRIS Values Download IRIS Besic Information System 2 Compare IRIS Values Download IRIS Representative. I am an automated esponse system valiable Related Links Upcoming Reviews and Dc More Recent A More Recent A IRIS Home I_2_3-Trichlorogr Basic Information IRIS Home I_2_3-Trichlorogr Basic Information INIS Home I_2_3-Trichlorogr IRIS Home Integrated in alphabetical order or by last significant revision date. You can click on the first letter of the	
Site Overview IKIS Glossary Frequent Questions Tools & Databases Related Links Upcoming Reviews and Dc More Recent A Integrated Risk Information System (IRIS) Recent Additions Contact Us More Recent A INTEGRATE Basic Information IRIS Home I.2.3-Trichloropr Basic Information IRIS Home I.2.3-Trichloropr Basic Information IRIS Home I.2.3-Trichloropr Basic Information IRIS Home I.2.3-Trichloropr Basic Information IRIS Home I.2.3-Trichloropr Basic Information IRIS Home IRIS Home IRIS Home IRIS Home Integrated Risk Information System (IRIS) A to Z List of IRIS Substances The substances In IRIS are listed in alphabetical order or by last significant revision date. You can click on the first letter of the	
Integrated Risk Information System (IRIS) Upcoming Reviews and Dc Image: State of the following comparison of the following comparison of the following comparison of the following comparison of the state o	
Tools & Databases Related Links Upcoming Reviews and Dc Image: Second Additions I Contact Us Nove Recent Additions I Contact Us Nove Recent Additions I Contact Us Second Additions I Contact Us Second Additions I Contact Us Second Additions I Contact Us Nove Recent Additions I Contact Us Second Additions I Contact Us Nove Recent Additions I Contact Us <td>ENTAL PROTECTION AGENCE</td>	ENTAL PROTECTION AGENCE
Tetrahydrofuran IRIS Process section where the substance appears, or use your browser's "Find" command to search for a substance name or Chemical Abs (CASRN).	substance name to bring you to the tract Services Registry Number
Substances (To search the IRIS database, use <u>Advanced Search</u>)	
Advanced search You will need Adobe Reader to view some of the files on this page. See EPA's PDF page to learn mo	re.
IRIS Guidance * See the Revision History in the IRIS Summary for more detailed information about updates for each substance.	
Download IRIS IRIS Track A-Z List of Substances Sorted by Date	
Site Help & Tools Site Overview ABCDEEGHIJKLMNOPORSTUVWXYZ IRIS Glossary	
Frequenc Cuestions Chemical Abstracts Service Last Significar Tools & Databases Substance Name Chemical Abstracts Service Last Significar	t Revision*
Related Links Acenaphthene CASRN 83-32-9 11/01/2	.990
QuickView	
Acenaphthylene CASRN 208-96-8 01/01/1	.991
p://cfpub.epa.gov/ncea/iris/index.cfm	

Attilio Citterio

EPA's Chemical Data Islands.

Attilio Citterio

http://ntp.niehs.nih.gov/

Yang et al (2006) Landscape of current toxicity databases and database standards. *Curr. Opinion Drug Discov. Develop.* 9(1),124-133.

Yang et al (2006) The art of data mining the minefields of toxicity databases to link chemistry to biology. *Curr. Comput-Aided Drug Design.*, 2(2), 135-150.

Strategy for Compounds Evaluation.

1. In Silico screening Predizioni DEMETRA a) Epi-suite (US EPA) Daphnia EC50 **b)** *Toxtree* (JRC) c) Demetra/Caesar (EU funded prj) 4 /alori prede<u>tti [-log(mg/L)]</u> Toxtree descriptors: MW LogP . 2 Δ Vapor Pressure • Water Solubility • **Lipid Solubility** • **Melting Point** • Valori sperimentali [-log(mg/L)] **Surface Tension**

PubChem is a component of National Institutes of Health (NIH) Roadmap Molecular Libraries Initiative.

PubChem contains information on substances, compound structure and bioactivity data.

PubChem is integrated with Entrez, the main research engine of NCBI.

•3 main database : PC Substance; PC Compound; PC BioAssay.

Attilio Citterio

Entrez with PubChem

Toxicological Data Banks.

Attilio Citterio

Correlating Domain.

Development of Alternative Toxicity Tests.

- REACh, Art.1: "The purpose of this Regulation is to ensure a high level of protection of human health and the environment, including the promotion of alternative methods for assessment of hazards of substances..."
- Art.13: "...In particular for human toxicity, information shall be generated whenever possible by means other than vertebrate animal tests, through the use of alternative methods, for example, in vitro methods or qualitative or quantitative structure-activity relationship models or from information from structurally related substances (grouping or read-across)..."

Attilio Citterio

TARGET: human skin artificial multilayer

OECD 431

in vitro method where test substance is applied to stratum corneum of the epidermal model at different time of exposure.

Detection throughout mitochondrial activity analysis

Replacement for the in vivo corrosivity test for hazard identification and classification corrosive potential

TARGET: human PBMC (Peripheral Blood Mononuclear Cell)

OECD 473

Mutagen-induced aberrations include:

- Gaps
- Breaks
- Dicentric chromosomes
- Ring Chromosomes

POLITECNICO DI MILANO

Before assessing impact of a pollutant, we need to find out where it goes.

Need to define:

- 1. K_{ow}
- 2. K_{oc}
- 3. Henry's Law Constant
- 4. Multimedia Compartment Model

Mackay, D. 1991, "Multimedia Environmental Models", 1st edition,, Lewis Publishers, Chelsea, MI

Attilio Citterio

POLITECNICO DI MILANO

		Spreadsheet			
Environmental Property	Unit	Location	Benzene	Ethanol	PCP*
Molecular Weight	g/mole	C6	78.11	46.07	266.34
Melting Point	°C	C7	5.53	115	174
Dissociation Constant	log pK _a	C8			4.74
Solubility in Water	g/m³	C11	1.78E+2	6.78E+5	14
Vapor Pressure	Ра	C12	1.27E+4	7.80E+3	4.15E-3
Octanol-Water Coefficient	log K _{ow}	C13	2.13	-0.31	5.05
Half-life in air	hr	C33	1.7E+1	5.5E+1	5.50E+2
Half-life in water	hr	C34	1.7E+2	5.5E+1	5.50E+2
Half-life in soil	hr	C35	5.5E+2	5.5E+1	1.7E+3
Half-life in sediment	hr	C36	1.7E+3	1.7E+2	5.50E+3

*PCP = Pentachlorophenol

Chemical	Percentage (%)				
(emission scenario)	Total mass (kg)	Air	Water	Soil	Sediment
Benzene (a)	1.98×10 ⁴	99.59	0.29	0.12	1.0×10 ⁻³
Benzene (b)	1.41×10 ⁵	4.48	95.17	5.5×10 ⁻³	0.35
Benzene (c)	6.86×10 ⁴	20.61	1.61	77.78	5.8×10 ⁻³
Ethanol (a)	4.56×10 ⁴	92.87	3.85	3.28	2.9×10 ⁻³
Ethanol (b)	7.35×10 ⁴	0.22	99.7	7.8×10 ⁻³	0.08
Ethanol (c)	7.84×10 ⁴	0.92	5.64	93.42	0.02
Pentachlorophenol (a)	2.07×10 ⁶	0.26	2.56	97.07	0.11
Pentachlorophenol (b)	4.59×10 ⁵	7.2x10 ⁻⁵	96.19	0.03	3.78
Pentachlorophenol (c)	2.39×10 ⁶	2.9x10 ⁻⁴	0.54	99.44	0.02

- a) 1000 kg/hr emitted into the air compartment
- b) 1000 kg/hr emitted into the water compartment
- c) 1000 kg/hr emitted into the soil compartment

K_{ow} and Bioaccumulation.

	Compound	K _{ow}	logK _{ow}
[solute] _{octanol}	methanol	0.18	-0.74
1-octanol [solute] _{water}	benzene	148	2.17
water	toluene	537	2.73
	decachloro- biphenyl	182,000	8.26

K_{ow} data available from CRC Handbook of Chemistry and Physics. Estimates from ChemDraw or from <u>http://www.vcclab.org/lab/alogps/start.html</u>

$$\log EC_{50} = a + b \cdot \log K_{ow}$$

- A key parameter in the assessment of environmental risk and in the prediction of the fate of chemicals in the environment.
- Describes the hydrophobicity or hydrophilicity of a compound.
- It can be used to estimate EC₅₀ for simple organisms because K_{ow} is the basis of correlations to calculate bioaccumulation and toxicity.
- Log K_{ow} can be estimated using several programs such as KowWIN Program (atom/fragment contribution method).
 <u>http://www.epa.gov/opptintr/exposure/docs/episuite.htm</u>
- Group contribution methods:

Studies have been performed on the relationship between toxicity and chemical structure for several compounds.

Henry's Law Constant.

	P = H×C	hints: H = 2479 / 10 ^{CD} div	ide by 101,325 Pa/atm
Compd.	H (25 °C), mol⋅kg⁻¹⋅bar⁻¹	H (25°C), Pa-m ³ - mol ⁻¹	H (25°C), atm-m ³ -mol ⁻¹
hexane	0.00060	170,000	1.7
toluene	0.16	677	6.7 × 10 ⁻³
benzene	0.18	557	5.5 × 10 ⁻³
CH ₂ Cl ₂	0.36	290	2.9 × 10 ⁻³
ethyl acetate	6.4	16	1.6 × 10 ⁻⁴
1-propanol	140	0.73	7.2 × 10 ⁻⁶
ethanol	200	0.51	5.0 × 10 ⁻⁶

Henry's Law Constants available from CRC Handbook of Chemistry and Physics and from the NIST website:. <u>http://webbook.nist.gov/chemistry/</u>

Unit conversion calculator for Henry's Law constants: http://www.mpch-mainz.mpg.de/~sander/res/henry-conv.html

Attilio Citterio

Multi-Compartmental Models.

- 1. Acidification potential
- 2. Ozone depletion potential
- 3. Smog Formation Potential
- 4. Global warming potential
- 5. Human toxicity potential (inhalation)
- 6. Human toxicity potential (ingestion)
- 7. Persistence
- 8. Bioaccumulation
- 9. Resource depletion

EXAMPLE:

Estimate the four Z factors for DDT, and then calculate the concentration of DDT in each of the phases, If 1 mole of DDT were released into the environment, what % of the DDT would go into each phase? Assume the following data:

 $K_{oc} = 2.04 \times 10^5 \text{ m}^3/\text{ton}$ $V_{air} = 10^{10} \text{ m}^3$ $V_{soil} = 9 \times 10^3 \text{ m}^3$ $\label{eq:Water} \begin{array}{l} \mathsf{H} = 9.57 \times 10^{-6} \text{ atm m}^3/\text{mol} \\ \mathsf{V}_{\text{water}} = 7 \times 10^6 \text{ m}^3 \\ \mathsf{V}_{\text{sediment}} = 2 \times 10^4 \text{ m}^3 \end{array}$

See: Life cycle assessment file

POLITECNICO DI MILANO

Books on Toxicity and Eco-toxicity of Chemicals.

Endocrine Disruption:

 Theo Colborn, Dianne Dumanoski, John Peterson Myers Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival?—A Scientific Detective Story,.

Toxicity and Eco-toxicity:

- Mark Cronin, Judith Madden, Steven Enoch, David Roberts Chemical Toxicity Prediction; Category Formation and Read-Across 2013 SBN: 978-1-84973-384-7
- W. Karcher, J. Devillers, Ph. Garrigues, J. Jacob Spectral Atlas of Polycyclic Aromatic Compounds: Including Information on Aquatic Toxicity, Occurrence and Biological Activity 2014, Springer-Verlag.
- <u>Ernest Hodgson</u> Ed. A Textbook of Modern Toxicology, 4th Ed. 2010 Wiley Ed. ISBN: 978-0-470-46206-5.
- SETAC, Toxicity Reduction and Toxicity Identification Evaluations for Effluents, Ambient Waters, and Other Aqueous Media, Volume 1 (2005).
- Joe Thornton, Pandora's Poison: Chlorine, Health, and a New Environmental Strategy, MIT Press, Cambridge, 2000.