

School of Industrial and Information Engineering Course 096125 (095857) Introduction to Green and Sustainable Chemistry

Introduction to Pollution Prevention.

Prof. Attilio Citterio Dipartimento CMIC "Giulio Natta" <u>https://iscamapweb.chem.polimi.it/citterio/education/course-topics/</u> Waste in EU is defined by Directive 2008/98/EC Article 3(1)* as "<u>any</u> <u>substance or object which the holder discards or intends or is required to</u> <u>discard</u>", potentially represents an enormous loss of resources in the form of both materials and energy; in addition, the management and disposal of waste can have serious environmental impacts. Landfills, for example, take up land space and may cause air, water and soil pollution, while incineration may result in emissions of dangerous air pollutants, unless properly regulated.

Waste can produce, if not adequately managed, pollution of:

> Air, Water, and Soil

A mandatory summary of Toxic Release Inventory of Industrial and Municipal Wastes is required and helpful to define issues and solutions related to this relevant area.

On 2 July 2014, the EU Commission adopted a legislative proposal and annex to review recycling and other waste-related targets in the EU Waste Framework Directive 2008/98/EC, the Landfill Directive 1999//31/EC and the Packaging and Packaging Waste Directive 94/62/EC.

http://eur-lex.europa.eu/legal-content/EN/ALL/;ELX_SESSIONID=JVV0T2HQSj6ykBx8hXhwRzKzpyFgpy49TLLnpCyQ8vZnvyckT2y1!-1416663925?uri=CELEX:02002R2150-20090420 The EU Directive 2008/98/Ce of November 2008, has defined the «waste hierarchy» establishing in general a «priority order» of what represent the «best environmental option in the law and in the waste policy».

First in the hierarchy appears the prevention, then follows the preparing for re-use, subsequently the recycling (i.e. any recovery operation), then follows the recovery different from recycling (e.g. energy recovery), and, finally, the disposal consisting in any operation other than recovery (i.e. landfill and incineration without energy recovery).

Industrial and Municipal Waste.

- Industrial waste is process waste associated with manufacturing.
 - This waste is classified as either municipal waste or hazardous waste, depending on the composition.
 - Regulatory programs for managing industrial waste vary widely among countries
 - The EU's approach to waste management is based on 3 principles: waste prevention, recycling/reuse, and improving final disposal and monitoring.
- Each year, industrial facilities in EU generate and manage 2 400 million ton of nonhazardous industrial waste in land application units whereas 101.3 million ton (4.0 % of the total) were classified as hazardous waste. (see table in next slide)
- Municipal waste in EU accounts for only about 10 % of total waste generated. However, it has a very high political profile because of its complex character, due to its composition, its distribution among many sources of waste, and its link to consumption patterns.

EU Waste Generation, 2010 (1 000 tons).

	Waste from economic activities and households		Agriculture, forestry &	Mining &	Manufacturing	Energy	Construction &	Other economic activities	Neusoholda
	Total	of which, hazardous	fishing (Section A)	(Section B)	(Section C)	(Section D)	(Section F)	(Sections E and G to U)	nouselloius
EU-28	2 505 400	101 370	39 440	671 780	275 580	86 040	859 740	354 230	218 590
EU-27	2 502 240	101 300	39 420	671 750	274 950	85 930	859 730	351 870	218 590
Belgium	62 537	4 479	231	1 701	14 543	1 2 1 0	18 165	22 008	4 679
Bulgaria	167 203	13 542	618	150 214	3 306	8 032	79	2 557	2 3 9 6
Czech Republic	23 758	1 363	114	115	4 202	1 540	9 3 5 4	5 099	3 334
Denmark	20 965	1784	201	41	1 9 1 9	517	3 176	12 676	2 4 3 6
Germany	363 545	19 931	256	24 493	48 981	9 087	190 990	53 426	36 312
Estonia	19 000	8 962	110	6 453	3716	6 534	436	1 320	430
Ireland	19 808	1 972	101	2 196	3 259	334	1 6 1 0	10 578	1730
Greece	70 433	292	5	44 793	4 9 4 1	11 029	2 086	2 381	5 198
Spain	137 519	2 9 9 1	5 8 17	31732	16 480	2 339	37 947	20 006	23 198
France	355 081	11 538	1 682	1 053	20 382	993	260 226	41 439	29 307
Croatia	3 158	73	14	29	634	108	8	2 365	0
Italy	158 628	8 543	311	706	35 928	2 660	59 340	27 204	32 479
Cyprus	2 373	37	129	382	132	3	1 068	198	461
Latvia	1 498	68	68	1	375	25	22	314	694
Lithuania	5 583	110	456	7	2 653	68	357	782	1 261
Luxembourg	10 440	379	3	18	498	2	8 731	803	385
Hungary	15 735	541	488	87	3 134	2718	3 072	3 372	2 865
Malta	1 288	17	3	0	9	1	989	149	138
Netherlands	119 255	4 421	3 948	184	14 094	1 156	78 064	12 737	9 072
Austria	34 883	1 473	550	269	2 958	453	9 0 1 0	17 019	4 623
Poland	159 458	1 492	1 543	61 547	28 6 18	20 291	20 818	17 751	8 890
Portugal	38 347	1 625	193	1 206	9 766	456	11071	10 193	5 464
Romania	219 310	666	18 353	177 404	7 862	5 888	238	3 438	6 127
Slovenia	5 159	120	141	12	1 517	558	1 509	694	728
Slovakia	9 384	415	526	166	2 669	878	1786	1 6 4 1	1719
Finland	104 337	2 559	2 772	54 851	15 211	1 4 4 5	24 645	3 7 3 2	1 681
Sweden	117 645	2 5 2 8	309	89 026	7 823	1 479	9 381	5 589	4 038
United Kingdom	259 068	9 4 4 7	494	23 092	19 970	6 239	105 560	74 764	28 949
Liechtenstein	312	8	0	12	32	0	0	268	0
Norway	9 433	1 763	195	366	2 687	28	1 543	2 385	2 229
FYR of Macedonia	2 328	150	0	855	1017	4	0	0	451
Serbia	33 623	11 145	0	26 458	1 146	6 0 1 9	0	0	0
Turkey	783 423	0	0	723 791	11 406	18 578	0	60	29 587

Source: Eurostat (online data code: env_wasgen)

Source: Eurostat 2014 (env_wasgen)

Waste generation, excluding major mineral wastes, EU-27, 2004–10.

■ 2004 ■ 2006 ■ 2008 ■ 2010 (1)

(1) Source: Eurostat (online data code: env_wasgen)

Waste Treatment in EU, 2010.

	Total	Energy	Incineration without	Recovery other than	Disposal other than incineration
EU-28	2.338.730	89.650	42.280	1.145.110	1.061.680
EU-27	2.336.140	89.530	42.260	1.144.710	1.059.640
Belgium	30.358	4.797	1.975	20.414	3.172
Bulgaria	159.852	144	2	1.819	157.886
Czech Republic	18.247	767	55	13.220	4.204
Denmark	11.343	2.749	0	6.767	1.828
Germany	349.564	28.423	12.646	241.563	66.932
Estonia	17.953	336	0	5.956	11.661
Ireland	9.421	168	43	3.356	5.854
Greece	70.390	126	21	11.722	58.520
Spain	132.688	2.523	412	80.289	49.464
France	336.021	14.241	7.809	200.677	113.294
Croatia	2.585	110	24	403	2.048
Italy	127.156	2.373	6.092	93.037	25.655
Cyprus	2.371	7	7	1.381	976
Latvia	1.006	63	0	312	630
Lithuania	4.546	111	2	1.062	3.371
Luxembourg	12.546	32	124	6.286	6.105
Hungary	13.424	859	82	5.125	7.357
Malta	1.202	0	7	129	1.065
Netherlands	113.640	5.835	3.552	57.563	46.691
Austria	29.751	1.364	1.649	14.982	11.756
Poland	146.580	3.804	369	109.695	32.712
Portugal	20.115	2.343	419	7.583	9.771
Romania	212.858	1.507	75	16.561	194.716
Slovenia	5.638	282	35	3.885	1.436
Slovakia	7.692	255	66	3.559	3.812
Finland	105.630	9.847	389	31.999	63.395
Sweden	110.476	6.261	87	16.587	87.541
United Kingdom	285.674	316	6.343	189.183	89.832
Norway	6.292	1.280	276	2.566	2.170
FYR of Macedonia	2.106	0	1	331	1.775
Serbia	33.059	26	1	565	32.466
Turkey	777.471	126	27	197.216	580.102

Source: Eurostat (online data code:,

Pollution in air is due to the release of volatile compounds from different sources and has several relevant effects on environment and humans:

- greenhouse effect
- ozone depletion
- acidification
- smog formation
- eutrophication
- human health
- ecosystem health

TYPES OF AIR POLLUTION

- 1. Primary pollutants: emitted directly into the air
- 2. Secondary pollutants: existing pollutants react with air to form new compounds

Sources of Air Toxics.

Routine Emissions from Stationary Sources

Accidental release

Each year, millions of tons of toxic pollutants are released into the air from both natural and manmade sources

Mobile Sources

Fires

Attilio Citterio

- Main pollutants (gaseous)
 - CO
 - NH₃
 - NM-VOC (nonmetallic volatile organic compounds)
 - NO_x
 - SO_x
- Heavy Metals
 - As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Zn
- POP (persistent organic pollutants)
 - PAH, benzo(a)pyrene, benzo(b)pyrene, DDT, ...
- PM (particulate matter)
 - PM10, PM2.5, TSP

EPA uses six "criteria pollutants" as indicators of air quality:

- Nitrogen Dioxide: NO₂
 - brownish gas irritates the respiratory system originates from combustion (N₂ in air is oxidized); NO_x sum of NO, NO₂, other oxides of N
- Ozone: ground level O₃
 - primary constituent of urban smog by reaction of VOC + NO_x with heat +sun light
- Carbon monoxide: CO
 - product of incomplete combustion, reduces bloods ability to carry O2
- Lead: Pb
 - toxic to liver, kidney, blood forming organs (tetraethyl lead in gasoline has been phased out but leaded Particulate Matter (PM10-2.5) again present
- Sulfur Dioxide: SO₂
 - formed when fuel (coal, oil) containing S is burned and metal smelting, is the precursor to acid rain along with NO_x (via H₂SO₄ and HNO₃)

Emissions Classification

http://www.eea.europa.eu/publications/EMEPCORINAIR4.

S. sectors	Description		
1	Combustion Energy sector, utilities, refineries		
2	Combustion small sources (residential)		
3	Combustion in industry	-	
4	Process emissions (industry)		
5	Mining and extraction of fossil fuels	AIR QU	ALITY I
6	Use of solvents, use of products		
7	Road transport	0-50	Good
71	Road transport gasoline	101-150	Linbealthy fo
72	Road transport diesel		sensitive gro
73	Road transport diesel	151-200	Unhealthy
7 4 ¹⁾	Road transport diesel - exhaust (volatilization)	201-300	Very Unhea
75 ²⁾	Road transport non-exhaust (tire, break and road wear	300-500	Hazardous
8	Non-road transport	http://ww	ww.airnov
9	Waste processing		-
10	Agriculture		
¹⁾ Relevant f	or NMVOC emissions "SNAP" Selected Nomenclature for		

²⁾ Relevant for PM emissions

sources of Air Pollution

DE

0-50	Good
51-100	Moderate
101-150	Unhealthy for sensitive groups
151-200	Unhealthy
201-300	Very Unhealthy
300-500	Hazardous

N.gov

Attilio Citterio

Trend in Emissions of NO_x , VOC, SO₂, and PM₁₀ (1940-2010 US).

Source: Latest Findings on National Air Quality: 1999 Status and Trends EPA EPA-454/F-00-002

Comparison of 1970 and 1999 Emissions

POLITECNICO DI MILANO

Attilio Citterio

Main Source of Air Pollution: Combustion as Energy Source Used by Humans – Historical Trend.

Net change in forested area between 1990 and 2000 and between 2000 and 2010 (Million hectares per year)

Fonte: ONU report 2011

POLITECNICO DI MILANO

Attilio Citterio

Per Capita Energy Consumption by Region (2010).

Attilio Citterio

Attilio Citterio

Figure 1.11 Energy-related CO₂ emissions by country

Sources: IEA databases and analysis; Boden et al., (2013).

Figure 1.14 Energy-related CO₂ emissions per capita and CO₂ intensity in selected regions

Notes: Bubble area indicates total annual energy-related CO₂ emissions in that region. MER = market exchange rate.

www.worldenergyoutlook.org/energyclimatemap

Trends in Heavy- duty Vehicles Emission Reduction in EU from 1980 to 2010.

POLITECNICO DI MILANO

Attilio Citterio

Possible Techniques for Cleaning up Air Contaminated with VOC.

Attilio Citterio

Almost all human activities can and do impact adversely upon the water.

Water quality is influenced by both direct point source and diffuse pollution which come from urban and rural populations, industrial emissions and farming. Diffuse pollution from farming and point source pollution from sewage treatment and industrial discharge are the main sources. For agriculture, the key pollutants include nutrients, pesticides, sediment and fecal microbes.

Oxygen consuming substances and hazardous chemicals are more associated with point source discharges.

Based on current water quality standards, over 70% of rivers and estuaries and 60% of lakes now meet legislatively mandated goals.

- Some of the risks include:
 - pollutant runoff from agricultural lands
 - storm water flows from cities
 - Improperly managed landfill

Point and Nonpoint Sources of Pollution.

POINT SOURCES

- Wastewater effluent, both municipal and industrial
- Runoff and leachate from waste disposal sites
- Runoff and infiltration from animal feed lots
- Runoff from mines, oil fields, and unswered industrial sites
- Storm sewer outfalls from cities with high (> 100 000) population
- Runoff from large construction sites
- Overflows of combined storm and sanitary sewers

NONPOINT SOURCES

- Runoff from agriculture including return flow from irrigated fields
- Runoff from pasture and range
- Urban runoff from answered and sewered areas (>100 000 p)
- Septic leachate and runoff from failed septic systems
- Runoff from small construction sites
- Runoff from abandoned mines
- Atmospheric deposition over a water surface
- Activities on land that generate contaminants.

Chart — Bathing water quality results in 2013 for the 28 EU Member States and other countries with bathing water quality results

Attilio Citterio

http://www.eea.europa.eu/data-and-maps/data/bathingwater-directive-status-of-bathing-water-6

Decoupling of TOC emission in water (EU) from gross value added in chemical industry (2012).

Chart — Decoupling of total organic carbon (TOC) emission in water from gross value added in chemical industry

http://www.eea.europa.eu/data-and-maps/data/member-states-reporting-art-7-under-the-european-pollutant-release-and-transfer-registere-prtr-regulation-7

Attilio Citterio

Possible Techniques for Cleaning Water Contaminated with Solvents.

The choice of processes leading to possible recover of solvents from dilute solutions are:

- decanting
- solvent extraction
- membrane separation
- adsorption
- air stripping
- steam stripping

Steam-stripping system for waste water clean-up.

Solid Waste is defined in EU by Directive 2008/98/EC Article 3(1)* and classified according to the waste classification code, also referred to as EWC (European Waste Catalogue) code.

Industrial Solid Waste

 is process waste associated with manufacturing at all levels.

Municipal Solid Waste

 includes wastes such as durable goods, nondurable goods, containers and packaging, food scraps, yard trimmings, and miscellaneous inorganic wastes from residential, commercial, institutional, and industrial sources.

*http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008L0098

E-PRTR Regulation, Recital 21.

EU - Guidance Document for the implementation of the European PRTR, 2006

Attilio Citterio

Overview on the Reporting Requirements for Facilities under the E-PRTR.

Releases		Quantity ¹	M/C/E ³	Method used		
	to air	kg/year	Х	Х		
	to water	kg/year	Х	Х		
	to land	kg/year	Х	Х		
Off site transfers of:		Quantity ¹	M/C/E ³	Method used	Name and address of recovered/ disposer	Address of actual recovery/disposal site receiving the transfer
Pollutants in wastewater⁵		kg/year	Х	х		
Non-hazardous	for disposal (D)	t/year	х	x		
waste	for recovery (R)	t/year	х	х		
Hazardous waste	for disposal (D)	t/year	х	х		
within the country	for recovery (R)	t/year	x	x		
Hazardous waste	for disposal (D)	t/year	х	x	х	х
transboundary	for recovery (R)	t/year	х	х	х	Х

¹⁾ Quantities are totals of releases from all deliberate, accidental, routine and non-routine activities at the site of the facility or of off-site transfers. ²⁾ The total quantity of each pollutant that exceeds the threshold value specified in Annex II; **in addition, any data that relate to accidental releases have to be reported separately whenever available.** ³⁾ It has to be indicated whether the reported information is based on measurement (M), calculation (C) or estimation (E). See chapter 1.1.11 of this guide. ⁴ Where data are measured or calculated, the method of measurement and/or the method for calculation shall be indicated. For further sub-division of this column see chapter 1.1.11.5 of this guide. ⁵ Off-site transfer of each pollutant destined for waste-water treatment that exceeds the threshold value specified in Annex II.

Attilio Citterio

Types of House Waste.

Municipal and industrial management: from simple collection to complex post-collection phases (sorting, recycling, disposal).

- Requires investment, management skills and technology
- Trend toward vertical integration (e.g. collection > incineration) and horizontal integration (e.g. management of municipal and industrial waste)
- Private Sector
 - From small contractors to large integrated companies
 - Trend towards concentration with greater market share
- Public Sector
 - Often organized through corporate structures, some grow through mergers and expand into other municipalities.

Some re-municipalization

Reported Performance of Member States, Recycling of Packaging Waste (%, 2011 Data).

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Packaging_waste_statistics

Attilio Citterio

Some Aspects of Municipal Waste Recovery of Plastics (Italy 2014).

Total recovery per capita 2014:

North Italy14.5 kgCentral Italy8.3 kgSouth Italy6.3 kg

Increase of recovery 2010 vs. 2009: 4%

In 2014 in Italy were collected 615.000 *ton* of plastic packaging (210 *kton* from MULTI and 404 *kton* from MONO), equivalent to:

7 times the volume of Big Pyramid of Egypt.

Source: COREPLA

Some Aspects of Recovery of Plastics (Europe 2014).

In 2014 plastics recycling and energy recovery reached 69.2%

In 2014, 25.8 million tonnes of post-consumer plastics waste ended up in the waste upstream. 69.2% was recovered through recycling and energy recovery processes while 30.8% still went to landfill.

Plastics – the Facts 2015 – Plastic Europe

Attilio Citterio

Origin and Fate of Pharmaceutical and Personal Chemical Products (PPCPs) in the Environment.

Attilio Citterio

http://www.epa.gov/ppcp/

Detergent Consumption per capita in Eighteen European Countries (2000-2010).

Attilio Citterio

Pharmaceutical and Personal Care Products (PPCPs) in Wastewaters.

With widespread occurrence of pharmaceuticals and personal care products (PPCPs) in the water cycle, their presence in source water has led to the need to better understand their treatability and removal efficiency in treatment processes. A possible treatment scheme has been recently proposed.*

S. Zhang et al. Water Research, 2016, 105, 85-96.
Integration of Waste Separation – From Industrial Production to Re-employ.

History of Waste Management.

(c) Current pollution prevention practices

Attilio Citterio

POLITECNICO DI MILANO

Integrated Waste Management.

Incineration of Organic Wastes.

© Cengage Learning

POLITECNICO DI MILANO

Waste-to-Energy Incineration.

Advantages

Reduces trash volume

Produces energy

Disadvantages

Expensive to build

Produces a hazardous waste

Concentrates hazardous substances into ash for burial

Sale of energy reduces cost

Encourages waste production

Sanitary Landfill.

Attilio Citterio

POLITECNICO DI MILANO

Advantages

Low operating costs

Can handle large amounts of waste

Filled land can be used for other purposes

No shortage of landfill space in many areas

Disadvantages

Noise, traffic, and dust

Releases greenhouse gases (methane and CO₂) unless they are collected

Output approach that encourages waste production

Eventually leaks and can contaminate groundwater Waste Management (Bioconversion).

Phytoremediation.

(Compiled by the authors using data from American Society of Plant Physiologists, U.S. Environmental Protection Agency, and Edenspace.)

Attilio Citterio

POLITECNICO DI MILANO

"Not everything that can be counted counts, and not everything that counts can be counted."

(oft attributed to Albert Einstein)

Limitations and Complexity of Environmental Chemical Analysis.

C.G. Daughton U.S. EPA July 2002

TIC = tentatively Identified compound

Attilio Citterio

POLITECNICO DI MILANO

History of Waste Management (Cont.).

- **Dilution**: Relies on assimilative capacity of natural systems
 - Too much waste in industrially and urban concentrated areas, assimilative capacity exceeded easily.
- **Treatment**: Waste management after it is generated
 - Treatment usually changes the form of pollutant and the polluted medium.
 - Increased regulatory pressure demands higher treatment efficiency - may not be possible with treatment only.
 - Treatment cost was systematically increasing US and EC spent about \$150 and \$50 Billion, respectively, in 2010 for treatment
 - Pollution becoming more complex and persistent
 - Need for prevention and recycling.

United Nations Environment Program (UNEP) defined "cleaner production" officially in 1989 as:

"... the continuous application of an integrated preventive environmental strategy applied to processes, products, and services to increase eco-efficiency and to reduce risks to humans and the environment."

The Europe 2020 Strategy seeks the following Priority Objectives:

- 1: To protect, conserve and enhance the Union's natural capital
- 2: To promote sustainable growth by developing a more competitive low-carbon economy that makes efficient, sustainable use of resources
- 3: To safeguard the Union's citizens from environment-related pressures and risks to health and well-being.
- 4: To maximise the benefits of Union environment legislation by improving implementation.

Pollution Prevention (PP) Definition (Cont.).

- EPA defines PP as "source reduction," and other practices that reduce or eliminate the creation of pollutants through;
 - increased efficiency in the use of raw materials, energy, water, or other resources, or
 - protection of natural resources by conservation.
- The Pollution Prevention Act defines "source reduction" to mean any practice which:
 - reduces the amount of any hazardous substance, pollutant, or contaminant entering any waste stream or otherwise released into the environment (including fugitive emissions) prior to recycling, treatment, or disposal;
 - reduces the hazards to public health and the environment associated with the release of such substances, pollutants, or contaminants.

Pollution Prevention Synonyms and Technology Performance.

- Cleaner production (CP)
- Waste minimization
- Source reduction
- Eco-efficiency

Pollution Prevention Terminology.

Eco-efficiency:

 Delivery of competitively-priced goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life cycle, to a level at least in line with the earth's estimated carrying capacity.

'doing more with less'

Cleaner production (CP):

- Continuous application of an integrated preventative environmental strategy applied to processes, products and services.
- Embodies:
 - 1. More efficient use of natural resources and thereby minimization of waste and pollution as well as risks to human health and safety.
 - 2. Addressing pollution issues at their source rather than at the end of the production process, *i.e.* avoidance of 'end-of-pipe' approach.

Pollution Prevention Terminology (2).

Seven components of Eco-efficiency:

- 1. Reduce material intensity of goods and services
- 2. Reduce energy intensity of goods and services
- 3. Reduce toxic dispersion
- 4. Enhance material recyclability
- 5. Maximize sustainable use of renewable resources
- 6. Extend product durability
- 7. Increase the service intensity of goods and services

Pollution Prevention Terminology (3).

Cleaner production includes:

For processes:

 conserving raw materials and energy, eliminating the use of toxic raw materials and reducing the quantity and toxicity of all emissions and wastes.

For products:

 reducing the negative effects of the product throughout its lifecycle, from the extraction of the raw materials right through to the product's ultimate disposal ("cradle to grave" approach).

For services.

incorporating environmental concerns into designing and delivering services.

"Tools" for eco-efficiency and cleaner production includes:

- 1. Life Cycle Assessment (Analysis)
- 2. Design for the environment
- 3. Environmental management systems
- 4. Environmental audits
- 5. Environmental accounting
- 6. Performance based contracting
- 7. Environmental labeling
- 8. Public environmental reporting
- 9. Industrial ecology
- 10. Environmental taxes

Life cycle assessment:

- Life Cycle Assessment (LCA) measures, and thus provides the opportunity for comparison, the environmental impacts of products or services relative to each other.
- Most LCA measurements are made by summing the "units of energy consumed" in the extraction of raw materials, transport, manufacture, distribution and final disposal of a product or service. Additional summations are made of emissions to air, land or water resulting from the creation and disposal of the product or service.

Design for the Environment:

 Design for the environment (DFE) or 'eco-design' examines a product's entire lifecycle and proposes changes to how the product is designed to minimize its environmental impact during its lifetime.

Environmental management systems (EMS):

- A structured approach to planning and implementing environmental protection measures that enable organizations to measure their environmental performance, and then regularly evaluate their performance and improvement.
- To develop an EMS, an organization has to assess its environmental impacts, set targets to reduce these impacts, and plan how to achieve the targets.

Environmental audits:

- Identification of all the environmental impacts made by a firm so that changes to processes and practices can be assessed and implemented.
- Once an audit is undertaken, the firm will be able to implement cleaner production and eco-efficiency improvements based on the audit findings.

Pollution Prevention Terminology (7).

Environmental accounting:

 Gathering the required information by an organization to understand the full spectrum of its environmental costs and to integrate these costs into decision making.

Performance based contracting (PCB):

- Is a technique mainly utilized in the energy industry, but has great potential for being applied to many parts of business activity. Under PBC, a third party contractor takes responsibility for the management of a specific part of the business. The contractor adopts the risk for managing that business but also gains financial rewards for making it more efficient (with gains shared).
- In the energy industry Performance Based Contractors approach firms with proposals to improve their energy efficiency over a period of time, at no cost to the firms. The savings made by the energy efficiency improvements are used to pay the contractor and also are returned to the firm. It is clear that such an approach can be used for many aspects of a firm's inputs and outputs — water, transport, waste, chemicals and such.

Environmental labeling ('eco-labeling'):

 Labeling consumer products which have environmental benefits, or at least a lower impact than their alternatives. Environmental labels assist consumers, both organizations and individuals, to make responsible product choices, by informing them of the environmental impacts of products and providing a standardized means of comparing products.

Public environmental reporting:

 A process by which organizations, including governments, can examine their environmental performance over a specified reporting period and disseminate that information to a wide audience. Results are published, either as a standalone document or as part of other publications, such as an annual report. The inclusion of an independent verification can help to establish the credibility of a report.

Industrial ecology (IE):

- Sitting of symbiotic or complementary industries in the same areas. This way, through thoughtful land-use planning and the design of individual plants, cleaner production can be said to be incorporated at the beginning of industrial activity, rather than being added afterwards.
- This type of development, also known as "industrial ecology parks," can facilitate improved recycling of outputs from one industry by other industries, rather than those outputs simply being treated as waste and sent to landfill. Such recycling reduces waste and increases profits, not only for the creator of outputs, but also the buyer.
- This design also reduces transport costs and the environmental effects of transport. Any improvements in land planning which reduces the need for transporting materials will lead to reduced air pollution in metropolitan air sheds.

Environmental taxes:

- Environmental Taxes are a means of encouraging optimal resource use, equity and the minimization of pollution. Three types of environmental tax are:
 - 1. Emission taxes on measurable emission to air, water and land, or the generation of noise.
 - 2. Consumption or product taxes levied on particular products that are considered damaging to the environment.
 - 3. Tax differentiation in existing indirect taxes such as excise duties, sales taxes or value added taxes for Environmental ends, for example, the reduction in the excise on unleaded gasoline.

Pollution Prevention Hierarchy.

- First level of action should be source reduction- prevent or reduce pollution at the source whenever feasible.
- Pollution that cannot be prevented should then be recycled in an environmentally safe manner whenever feasible.
- What is non-recyclable should be treated
- What remains after treatment should be disposed.

Pollution Management Hierarchy (2).

Туре		Description/Examples
1.	Regulative instruments	Command and control, permits, technological prescription
2.	Market-based instruments	Taxes, tariffs, subsidies, tradable permits
3.	Procedural instruments	Auditing programs, environmental impact assessment
4.	Co-operative instruments	Commitments and agreements, roundtables, action plans, harmonization, research
5.	Persuasive instruments Information	education, public campaigns, appeals, eco labels

Source: Böcher and Töller (2007).

Overall, there are a total of 29 different policy instruments, the majority of which pertain to the most interventionist category, i.e. regulative instruments (51%). The two most common measures in this category are technical requirements for polluting activities (excluding transportation) and the issuance of limit values, with 72 and 40 instruments respectively. The procedural instruments are the second most common instrument type - monitoring and reporting requirements stand out the most, occupying shares of 12.1 % and 10.9 %, respectively. Overall the two explain for 80%.

Instrument types	Number	Share of total
Re gulative	. 165	51.24
Allocation of emission allowances	4	1.24
Approval of procedures	2	0.62
Implementation requirements	19	5.90
Limit values	40	12.42
Mandatory targets	5	1.55
National allocation plans	11	3.42
Restrictions (on production or trade)	12	3.73
Technical requirements	72	22.36
Market-based	17	5.28
Auctioning of allowances	1	0.31
Investment prescription	1	0.31
Fremium	1	0.31
Tax	1	0.31
Trading scheme	13	4.04
Procedural	87	27.02
Audit	1	0.31
Authorization procedures	1	0.31
Evaluation	4	1.24
Monitoring	39	12.11
Registration requirements	5	1.55
Reporting	35	10.87
Specification of inventory system	2	0.62
Co-operative	36	11.18
Action plans	13	4.04
Adaptation of legislation	3	0.93
Financial support (demonstration projects)	2	0.62
Harmonization	5	1.55
Information exchange	8	2.48
Research and development	5	1.55
Persuasive	17	5.28
Access to information	7	2.17
Labelling	9	2.80
Training	1	0.31
Sum	322	100.00

Source: Own illus tration based on data obtained from EUR-Lex (2011)

Basel Convention

- 1992 in effect
- 1995 amendment bans all transfers of hazardous wastes from industrialized countries to less-developed countries
- 2012 ratified by 179 countries, but not the United States
- 2000 delegates from 122 countries completed a global treaty
- Control 12 persistent organic pollutants (POPs)
- Include DDT, PCBs, dioxins
- Discovered that everyone on earth has POPs in blood
- 2000 Swedish Parliament law
- By 2020 ban all chemicals that are persistent and can accumulate in living tissue
- Norway, Austria, and the Netherlands: Committed to reduce resource waste by 75%

Actor	Role
The company	responsibility and internal control
• employers	 prevention teams and organization
employees	change in work routines
	 participation and influence
The network of the company	cleaner working procedures
consultants	 cleaner process technologies
 suppliers 	 changes in design and construction
 educational institutions 	clean technologies
 trade unions 	 learn prevention strategies
	 new courses and further training
	 working conditions versus environment
	 'cleaner' wage-bargaining system
	 diffusion of knowledge about prevention
The authorities	green wastewater plan
municipality	health and safety
 central government 	 environmental certification
	 trade agreements/action plans
	 initiate methods of promoting clean technologies
The public	 motivation to prevention
• citizen	information
• media	 change of consumer behaviour and debate

Process Elements for P2.

- Change input materials
- Technology change
- Good house keeping
- Product change
- On-site use
- Recycle/recovery

Change in input materials:

- Accomplishes P2 by reducing or eliminating the hazardous materials that enter the production process. Changes in input materials can also be made to avoid the generation of hazardous wastes.
 - 1. material purification 2. material substitution.

Attilio Citterio

POLITECNICO DI MILANO

Technological change:

- Oriented toward process and equipment modifications to reduce waste, primarily in a production setting. Technology changes can range from minor alterations that can be implemented in a matter of days at low cost, to the replacement of processes involving large capital costs.
 - changes in the production process
 - equipment, layout, or piping changes
 - use of automation
 - changes in process conditions (e.g., flow rates, temperatures, pressures, and residence times).

Good housekeeping:

 Procedural, administrative, or institutional measures that a company can use to minimize waste. Many of these measures are used in industry largely as efficiency improvements and good management practices. Good housekeeping practices can often be implemented with little cost. These practices can be implemented in all areas of the plant, including production, maintenance operations, and in raw material and product storage.

Good operating practices include:

- P2 programs
- management and personnel practices
- material handling and inventory practices
- loss prevention
- waste segregation
- cost accounting practices
- production scheduling

Product change:

• Performed by the manufacturer of a product with the intent of reducing waste resulting from a product's use.

Product changes include:

- product substitution
- product conservation
- changes in product composition.

On-site reuse:

 Recycling via use and/or reuse involves the return of a waste material either to the originating process as a substitute for an input material, or to another process as an input material.

Greenhouse Gases:

- Biomass IGCC nearly zero net GHGs
- Average coal system: ~1,000 g CO2-equiv/kWh
- NGCC system: ~500 g CO2-equiv/kWh
- Today's biomass systems remove GHGs from atmosphere

Energy:

- Coal and natural gas: negative system energy balance
- Even neglecting the energy content of coal and natural gas, biomass systems are more energy efficient
- NGCC: natural gas extraction and losses account for 21% of total energy

Air emissions:

- Biomass: few particulates, SO₂, NO_x, and methane
- Coal: upstream CO and NMHC emissions lower
- NGCC: system methane emissions high

Resource consumption:

Biomass systems << fossil systems

Co-firing:

- 15% co-firing reduces GWP of coal system by 18%
- Reduction in emissions, resource consumption, and energy use

Recycling/Recovery Valorization Chain.

Attilio Citterio

Closing the Carbon Cycle.

Reducing Carbon.

Attilio Citterio

Kyoto = Annex 1 Parties constant after 2010

Full Compliance to the Kyoto Protocol - 440 ppm Non Compliance - 450 ppm at 2030

Closed cycle - <u>but unbalanced</u> in the production of CO₂.

Need for mitigating actions of CO₂ capture!

- Biological
- Chemical/geochemical (pre-concentration)
 - Deep see
 - Recovery coal and petroleum
 - Green Chemistry

Attilio Citterio

CO₂ Possible Uses from Thermal Plants: Carbon Sequestration - Geologic Storage.

Attilio Citterio

Deep-well Disposal.

Advantages

Safe if sites are chosen carefully

Wastes can often be retrieved

Low cost

Disadvantages

Leaks from corrosion of well casing

Emits CO₂ and other air pollutants

Output approach that encourages waste production

Alternatives in the CO₂ mineralization:

Overall carbonation chemistry, with M = Mg or Ca (or Fe, ...) MO-ySiO₂-zH₂O(s) + CO₂(g) \neq MCO₃(s) + y SiO₂(s) + z H₂O(l) + Heat

CO₂ Mineralization as CCS Option.

Carbon (dioxide) capture and storage (CCS) options:

- Carbon capture and geological storage (CCGS) often taken for "CCS" – *i.e. EC proposal for a directive on CCGS, 1/2008*
- Carbon capture and mineral carbonation (CCMC)
- Carbon capture and ocean storage (CCOS)
- Carbon capture and export (CCE)
- CCGS receives by far the most publicity and industrial support. Primarily from oil/gas sector
- According IEAs CCS report (2008) "It is unlikely that mineralization will offer an opportunity for sequestering large volume of CO₂"

Mineralization Storage Potential.

- Much larger potential than other CCS options
- Could bind all fossil carbon
- Available wordwide, hence increasing attention
- No "leakage" problems from carbonates
- Worldwide capacity > 5000 Gt CO₂

Carbon storage capacity (Gt)

CO₂ Demineralization: Benefit and Limits.

- Enormous capacity, widely spread
- Negligible leakage: Dissolution produces Mg²⁺ + HCO₃⁻ ions, post-CCS monitoring not needed
- Overall exothermic chemistry; potential for energy neutral process
- A lot of iron by-product

- Large amounts of materials needed: ~3 tons per ton CO₂, ~8 tons per ton of coal
- Product amounts large but not problematic; low value MgCO₃
- Slow chemistry, staged processing needed
- Slow due to lack of manpower, funding and publicity – technology development

CO₂ Mineralization: Aqueous Solution-based Process.

Attilio Citterio

- P = 40-159 bar, T = 185°C; NaCl, NaHCO₃ for controlling ion strength,
- Costs 55-75 US\$/ton CO₂
- Energy input 10-400 kWh/ton CO₂ (preheat, crush/grind)
- Increased rates with KHCO₃ reported
- Dissolution chemistry and silica layer still hot issues
- <u>Note</u>: reported energy are grossly over-estimated
 heat ≠ power !!!

Other Possible Technologies.

- Olivine containing rocks enhancing natural sequestration (0.1 *Mt/a* of CO₂ 100 ×)
- Mg,Ca-containing oil shale ash can be carbonated (10-15 *Mt/a*)
- Calcium carbonate for use in paper industry can be obtained from steelmaking slag (limited CCS potential)
- Mg(OH)₂ production from serpentine mineral followed by gas-solid carbonation (Finland).
- Injection of CO₂ into basaltic rock (Iceland)
- Spreading fine olivine powder of land and trapping CO₂ from air.

Mineralization Storage Potential / 2.

- March 2009 estimate USA: "more than 500 years of U.S. CO₂ production" (~7 Gt/a).
- Finland 2008: 200-300 years of Kyoto protocol excess ~12 Mt/a, i.e. 2.5-3.1 Gt CO₂ in central Finland.
- Worldwide capacity > 5000 Gt CO₂

GHG Abatement Cost Curve for the Chemical Industry.

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below EUR 60 per tCO₂e (society view) if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play

* 4% interest rate, depreciation over life time of equipment

** 10% interest rate, depreciation over 10 years

Source: ICCA/ McKinsey analysis

Attilio Citterio

Key Learning Points.

- Problems of waste include inefficient use of resources & capital as well as risks to welfare and the environment
- Most developed countries have waste minimization programs - recycling, energy efficiency
- At the process level, process flow sheets are invaluable in highlighting sources of waste.
- Most chemical products end up in the environment they should be designed for recycle or degradation.